BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 30904549)

  • 1. A gellan-based fluid gel carrier to enhance topical spray delivery.
    Ter Horst B; Moakes RJA; Chouhan G; Williams RL; Moiemen NS; Grover LM
    Acta Biomater; 2019 Apr; 89():166-179. PubMed ID: 30904549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of mucoadhesive sprayable gellan gum fluid gels.
    Mahdi MH; Conway BR; Smith AM
    Int J Pharm; 2015 Jul; 488(1-2):12-9. PubMed ID: 25863119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gellan gum fluid gels for topical administration of diclofenac.
    Mahdi MH; Conway BR; Mills T; Smith AM
    Int J Pharm; 2016 Dec; 515(1-2):535-542. PubMed ID: 27789369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: Innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time.
    Destruel PL; Zeng N; Seguin J; Douat S; Rosa F; Brignole-Baudouin F; Dufaÿ S; Dufaÿ-Wojcicki A; Maury M; Mignet N; Boudy V
    Int J Pharm; 2020 Jan; 574():118734. PubMed ID: 31705970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle stability in dilute fermented dairy drinks: formation of fluid gel and impact on rheological properties.
    Kiani H; Mousavi ME; Mousavi ZE
    Food Sci Technol Int; 2010 Dec; 16(6):543-51. PubMed ID: 21339170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of a novel in situ gel for sustained ocular drug delivery using Box-Behnken design: In vitro, ex vivo, in vivo and human studies.
    Ranch KM; Maulvi FA; Naik MJ; Koli AR; Parikh RK; Shah DO
    Int J Pharm; 2019 Jan; 554():264-275. PubMed ID: 30423418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion-activated
    Lavania K; Garg A
    Recent Adv Drug Deliv Formul; 2024; 18(1):35-49. PubMed ID: 38058093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of gellan gum on the thermogelation property and drug release profile of Poloxamer 407 based ophthalmic formulation.
    Dewan M; Sarkar G; Bhowmik M; Das B; Chattoapadhyay AK; Rana D; Chattopadhyay D
    Int J Biol Macromol; 2017 Sep; 102():258-265. PubMed ID: 28390828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative sprayable in situ gelling fluticasone suspension: Development and optimization of nasal deposition.
    Nižić L; Ugrina I; Špoljarić D; Saršon V; Kučuk MS; Pepić I; Hafner A
    Int J Pharm; 2019 May; 563():445-456. PubMed ID: 30965121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gellan Gum Based
    Janga KY; Tatke A; Dudhipala N; Balguri SP; Ibrahim MM; Maria DN; Jablonski MM; Majumdar S
    J Pharmacol Exp Ther; 2019 Sep; 370(3):814-822. PubMed ID: 30872389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology of sheared gels based on low acyl-gellan gum.
    García MC; Alfaro MC; Muñoz J
    Food Sci Technol Int; 2016 Jun; 22(4):325-32. PubMed ID: 26251462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-Carnosine: multifunctional dipeptide buffer for sustained-duration topical ophthalmic formulations.
    Singh SR; Carreiro ST; Chu J; Prasanna G; Niesman MR; Collette Iii WW; Younis HS; Sartnurak S; Gukasyan HJ
    J Pharm Pharmacol; 2009 Jun; 61(6):733-42. PubMed ID: 19505363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocrosslinkable gellan gum film as an anti-adhesion barrier.
    Lee MW; Tsai HF; Wen SM; Huang CH
    Carbohydr Polym; 2012 Oct; 90(2):1132-8. PubMed ID: 22840050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery.
    Hao J; Zhao J; Zhang S; Tong T; Zhuang Q; Jin K; Chen W; Tang H
    Colloids Surf B Biointerfaces; 2016 Nov; 147():376-386. PubMed ID: 27566226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gellan gum-based in situ gelling ophthalmic nanosuspension of Posaconazole.
    Khare P; Chogale MM; Kakade P; Patravale VB
    Drug Deliv Transl Res; 2022 Dec; 12(12):2920-2935. PubMed ID: 35538191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic gelation of xanthan gum with locust bean gum: a rheological investigation.
    Copetti G; Grassi M; Lapasin R; Pricl S
    Glycoconj J; 1997 Dec; 14(8):951-61. PubMed ID: 9486428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release.
    Rupenthal ID; Green CR; Alany RG
    Int J Pharm; 2011 Jun; 411(1-2):69-77. PubMed ID: 21453762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of gellan gum fluid gels as modified release oral liquids.
    Mahdi MH; Conway BR; Smith AM
    Int J Pharm; 2014 Nov; 475(1-2):335-43. PubMed ID: 25169076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement in the in situ gelling properties of deacetylated gellan gum by the immobilization of thiol groups.
    Krauland AH; Leitner VM; Bernkop-Schnürch A
    J Pharm Sci; 2003 Jun; 92(6):1234-41. PubMed ID: 12761812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing ophthalmic delivery of a poorly water soluble drug from an aqueous in situ gelling system.
    Senjoti FG; Timmins P; Conway BR; Smith AM
    Eur J Pharm Biopharm; 2020 Sep; 154():1-7. PubMed ID: 32599271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.