These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 30904642)
41. Elucidating the effect of HONO on O Yang Y; Li X; Zu K; Lian C; Chen S; Dong H; Feng M; Liu H; Liu J; Lu K; Lu S; Ma X; Song D; Wang W; Yang S; Yang X; Yu X; Zhu Y; Zeng L; Tan Q; Zhang Y Sci Total Environ; 2021 Feb; 756():144127. PubMed ID: 33288267 [TBL] [Abstract][Full Text] [Related]
42. Different HONO Sources for Three Layers at the Urban Area of Beijing. Zhang W; Tong S; Jia C; Wang L; Liu B; Tang G; Ji D; Hu B; Liu Z; Li W; Wang Z; Liu Y; Wang Y; Ge M Environ Sci Technol; 2020 Oct; 54(20):12870-12880. PubMed ID: 32924447 [TBL] [Abstract][Full Text] [Related]
43. Observation-Based Diagnostics of Reactive Nitrogen Recycling through HONO Heterogenous Production: Divergent Implications for Ozone Production and Emission Control. Chong K; Wang Y; Zheng M; Qu H; Zhang R; Lee YR; Ji Y; Huey LG; Fang H; Song W; Fang Z; Liu C; Gao Y; Tang J; Wang X Environ Sci Technol; 2024 Jul; 58(26):11554-11567. PubMed ID: 38885439 [TBL] [Abstract][Full Text] [Related]
44. Sources of atmospheric nitrous acid: state of the science, current research needs, and future prospects. Spataro F; Ianniello A J Air Waste Manag Assoc; 2014 Nov; 64(11):1232-50. PubMed ID: 25509545 [TBL] [Abstract][Full Text] [Related]
45. Budget of atmospheric nitrous acid (HONO) during the haze and clean periods in Shanghai: Importance of heterogeneous reactions. Feng J; Ren E; Hu M; Fu Q; Duan Y; Huang C; Zhao Y; Wang S Sci Total Environ; 2023 Nov; 900():165717. PubMed ID: 37482358 [TBL] [Abstract][Full Text] [Related]
46. Variations and sources of nitrous acid (HONO) during a severe pollution episode in Beijing in winter 2016. Zhang W; Tong S; Ge M; An J; Shi Z; Hou S; Xia K; Qu Y; Zhang H; Chu B; Sun Y; He H Sci Total Environ; 2019 Jan; 648():253-262. PubMed ID: 30118938 [TBL] [Abstract][Full Text] [Related]
47. Atmospheric HONO formation during and after the Spring Festival holidays in a coastal city of China. Ni X; Sun C; Zhang Y; Liang B; Zhou S; Lan G; Zhao J J Environ Sci (China); 2023 May; 127():251-263. PubMed ID: 36522057 [TBL] [Abstract][Full Text] [Related]
48. Severe photochemical pollution formation associated with strong HONO emissions from dew and guttation evaporation. Xu W; Kuang Y; Liu C; Ma Z; Zhang X; Zhai M; Zhang G; Xu W; Cheng H; Liu Y; Xue B; Luo B; Zhao H; Ren S; Liu J; Tao J; Zhou G; Sun Y; Xu X Sci Total Environ; 2024 Feb; 913():169309. PubMed ID: 38103604 [TBL] [Abstract][Full Text] [Related]
49. Impacts of six potential HONO sources on HO Zhang J; Chen J; Xue C; Chen H; Zhang Q; Liu X; Mu Y; Guo Y; Wang D; Chen Y; Li J; Qu Y; An J Sci Total Environ; 2019 Sep; 681():110-123. PubMed ID: 31102812 [TBL] [Abstract][Full Text] [Related]
50. Vertical distributions of atmospheric HONO and the corresponding OH radical production by photolysis at the suburb area of Shanghai, China. He S; Wang S; Zhang S; Zhu J; Sun Z; Xue R; Zhou B Sci Total Environ; 2023 Feb; 858(Pt 1):159703. PubMed ID: 36306851 [TBL] [Abstract][Full Text] [Related]
51. Unexpectedly High Indoor HONO Concentrations Associated with Photochemical NO Liu J; Deng H; Lakey PSJ; Jiang H; Mekic M; Wang X; Shiraiwa M; Gligorovski S Environ Sci Technol; 2020 Dec; 54(24):15680-15688. PubMed ID: 33232600 [TBL] [Abstract][Full Text] [Related]
52. HONO chemistry and its impact on the atmospheric oxidizing capacity over the Indo-Gangetic Plain. Pawar PV; Mahajan AS; Ghude SD Sci Total Environ; 2024 Oct; 947():174604. PubMed ID: 38981538 [TBL] [Abstract][Full Text] [Related]
53. The Role of Iron-Bearing Minerals in NO2 to HONO Conversion on Soil Surfaces. Kebede MA; Bish DL; Losovyj Y; Engelhard MH; Raff JD Environ Sci Technol; 2016 Aug; 50(16):8649-60. PubMed ID: 27409359 [TBL] [Abstract][Full Text] [Related]
54. Exploring the HONO source during the COVID-19 pandemic in a megacity in China. Wang M; Wang S; Zhang R; Yuan M; Xu Y; Shang L; Song X; Zhang X; Zhang Y J Environ Sci (China); 2025 Mar; 149():616-627. PubMed ID: 39181672 [TBL] [Abstract][Full Text] [Related]
55. Nitrous acid formation on Zea mays leaves by heterogeneous reaction of nitrogen dioxide in the laboratory. Marion A; Morin J; Gandolfo A; Ormeño E; D'Anna B; Wortham H Environ Res; 2021 Feb; 193():110543. PubMed ID: 33253704 [TBL] [Abstract][Full Text] [Related]
56. Photochemistry of nitrous acid (HONO) and nitrous acidium ion (H2ONO) in aqueous solution and ice. Anastasio C; Chu L Environ Sci Technol; 2009 Feb; 43(4):1108-14. PubMed ID: 19320166 [TBL] [Abstract][Full Text] [Related]
57. Investigations on HONO formation from photolysis of adsorbed HNO3 on quartz glass surfaces. Laufs S; Kleffmann J Phys Chem Chem Phys; 2016 Apr; 18(14):9616-25. PubMed ID: 26997156 [TBL] [Abstract][Full Text] [Related]
58. Ship emission of nitrous acid (HONO) and its impacts on the marine atmospheric oxidation chemistry. Sun L; Chen T; Jiang Y; Zhou Y; Sheng L; Lin J; Li J; Dong C; Wang C; Wang X; Zhang Q; Wang W; Xue L Sci Total Environ; 2020 Sep; 735():139355. PubMed ID: 32473440 [TBL] [Abstract][Full Text] [Related]
59. Reduction and Photoreduction of NO Ricker HM; Leonardi A; Navea JG ACS Earth Space Chem; 2022 Dec; 6(12):3066-3077. PubMed ID: 36561196 [TBL] [Abstract][Full Text] [Related]
60. The photolysis of ortho-nitrophenols: a new gas phase source of HONO. Bejan I; Abd-el-Aal Y; Barnes I; Benter T; Bohn B; Wiesen P; Kleffmann J Phys Chem Chem Phys; 2006 May; 8(17):2028-35. PubMed ID: 16633690 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]