These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30905285)

  • 21. CRISPR-mediated phage resistance and the ghost of coevolution past.
    Vale PF; Little TJ
    Proc Biol Sci; 2010 Jul; 277(1691):2097-103. PubMed ID: 20236977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. My host's enemy is my enemy: plasmids carrying CRISPR-Cas as a defence against phages.
    Siedentop B; Rüegg D; Bonhoeffer S; Chabas H
    Proc Biol Sci; 2024 Jan; 291(2015):20232449. PubMed ID: 38262608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strong bias in the bacterial CRISPR elements that confer immunity to phage.
    Paez-Espino D; Morovic W; Sun CL; Thomas BC; Ueda K; Stahl B; Barrangou R; Banfield JF
    Nat Commun; 2013; 4():1430. PubMed ID: 23385575
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Competition between mobile genetic elements drives optimization of a phage-encoded CRISPR-Cas system: insights from a natural arms race.
    McKitterick AC; LeGault KN; Angermeyer A; Alam M; Seed KD
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180089. PubMed ID: 30905288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different genetic and morphological outcomes for phages targeted by single or multiple CRISPR-Cas spacers.
    Watson BNJ; Easingwood RA; Tong B; Wolf M; Salmond GPC; Staals RHJ; Bostina M; Fineran PC
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180090. PubMed ID: 30905290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic impact of CRISPR immunization against bacteriophages.
    Barrangou R; Coûté-Monvoisin AC; Stahl B; Chavichvily I; Damange F; Romero DA; Boyaval P; Fremaux C; Horvath P
    Biochem Soc Trans; 2013 Dec; 41(6):1383-91. PubMed ID: 24256225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive analysis of the CRISPR-Cas systems in Streptococcus thermophilus strains isolated from traditional yogurts.
    Özcan A; Yıbar A; Kiraz D; Ilıkkan ÖK
    Antonie Van Leeuwenhoek; 2024 Apr; 117(1):63. PubMed ID: 38561518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance.
    Dupuis MÈ; Villion M; Magadán AH; Moineau S
    Nat Commun; 2013; 4():2087. PubMed ID: 23820428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Killer Archaea: Virus-Mediated Antagonism to CRISPR-Immune Populations Results in Emergent Virus-Host Mutualism.
    DeWerff SJ; Bautista MA; Pauly M; Zhang C; Whitaker RJ
    mBio; 2020 Apr; 11(2):. PubMed ID: 32345641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A truncated anti-CRISPR protein prevents spacer acquisition but not interference.
    Philippe C; Morency C; Plante PL; Zufferey E; Achigar R; Tremblay DM; Rousseau GM; Goulet A; Moineau S
    Nat Commun; 2022 May; 13(1):2802. PubMed ID: 35589712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Outcomes and characterization of chromosomal self-targeting by native CRISPR-Cas systems in Streptococcus thermophilus.
    Cañez C; Selle K; Goh YJ; Barrangou R
    FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31077282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems.
    Mohanraju P; Makarova KS; Zetsche B; Zhang F; Koonin EV; van der Oost J
    Science; 2016 Aug; 353(6299):aad5147. PubMed ID: 27493190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape.
    Pyenson NC; Gayvert K; Varble A; Elemento O; Marraffini LA
    Cell Host Microbe; 2017 Sep; 22(3):343-353.e3. PubMed ID: 28826839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the
    da Silva Duarte V; Giaretta S; Campanaro S; Treu L; Armani A; Tarrah A; Oliveira de Paula S; Giacomini A; Corich V
    Viruses; 2018 Dec; 11(1):. PubMed ID: 30583530
    [No Abstract]   [Full Text] [Related]  

  • 35. How adaptive immunity constrains the composition and fate of large bacterial populations.
    Bonsma-Fisher M; Soutière D; Goyal S
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):E7462-E7468. PubMed ID: 30038015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbiology: Bacteria get vaccinated.
    Barrangou R; Klaenhammer TR
    Nature; 2014 Sep; 513(7517):175-6. PubMed ID: 25209793
    [No Abstract]   [Full Text] [Related]  

  • 37. Generation of Bacteriophage-Insensitive Mutants of Streptococcus thermophilus via an Antisense RNA CRISPR-Cas Silencing Approach.
    McDonnell B; Mahony J; Hanemaaijer L; Kouwen TRHM; van Sinderen D
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization and comparison of CRISPR Loci in Streptococcus thermophilus.
    Hu T; Cui Y; Qu X
    Arch Microbiol; 2020 May; 202(4):695-710. PubMed ID: 31781808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity.
    Borges AL; Zhang JY; Rollins MF; Osuna BA; Wiedenheft B; Bondy-Denomy J
    Cell; 2018 Aug; 174(4):917-925.e10. PubMed ID: 30033364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The diversity-generating benefits of a prokaryotic adaptive immune system.
    van Houte S; Ekroth AK; Broniewski JM; Chabas H; Ashby B; Bondy-Denomy J; Gandon S; Boots M; Paterson S; Buckling A; Westra ER
    Nature; 2016 Apr; 532(7599):385-8. PubMed ID: 27074511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.