BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 30905288)

  • 1. Competition between mobile genetic elements drives optimization of a phage-encoded CRISPR-Cas system: insights from a natural arms race.
    McKitterick AC; LeGault KN; Angermeyer A; Alam M; Seed KD
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180089. PubMed ID: 30905288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary Sweeps of Subviral Parasites and Their Phage Host Bring Unique Parasite Variants and Disappearance of a Phage CRISPR-Cas System.
    Angermeyer A; Hays SG; Nguyen MHT; Johura FT; Sultana M; Alam M; Seed KD
    mBio; 2021 Feb; 13(1):e0308821. PubMed ID: 35164562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the CRISPR-Cas system in bacteriophages active on epidemic strains of Vibrio cholerae in Bangladesh.
    Naser IB; Hoque MM; Nahid MA; Tareq TM; Rocky MK; Faruque SM
    Sci Rep; 2017 Nov; 7(1):14880. PubMed ID: 29093571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chimeric nuclease substitutes a phage CRISPR-Cas system to provide sequence-specific immunity against subviral parasites.
    Barth ZK; Nguyen MH; Seed KD
    Elife; 2021 Jul; 10():. PubMed ID: 34232860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-phage islands force their target phage to directly mediate island excision and spread.
    McKitterick AC; Seed KD
    Nat Commun; 2018 Jun; 9(1):2348. PubMed ID: 29904071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phage satellite tunes inducing phage gene expression using a domesticated endonuclease to balance inhibition and virion hijacking.
    Netter Z; Boyd CM; Silvas TV; Seed KD
    Nucleic Acids Res; 2021 May; 49(8):4386-4401. PubMed ID: 33823541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dominant
    Hays SG; Seed KD
    Elife; 2020 Apr; 9():. PubMed ID: 32329714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phage weaponizes a satellite recombinase to subvert viral restriction.
    Nguyen MHT; Netter Z; Angermeyer A; Seed KD
    Nucleic Acids Res; 2022 Oct; 50(19):11138-11153. PubMed ID: 36259649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering.
    Box AM; McGuffie MJ; O'Hara BJ; Seed KD
    J Bacteriol; 2016 Feb; 198(3):578-90. PubMed ID: 26598368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viral Satellites Exploit Phage Proteins to Escape Degradation of the Bacterial Host Chromosome.
    McKitterick AC; Hays SG; Johura FT; Alam M; Seed KD
    Cell Host Microbe; 2019 Oct; 26(4):504-514.e4. PubMed ID: 31600502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of the evolutionary arms race between Vibrio cholerae and Vibriophage clinical isolates.
    Yen M; Camilli A
    Int Microbiol; 2017 Sep; 20(3):116-120. PubMed ID: 29446802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteriophage ICP1: A Persistent Predator of
    Boyd CM; Angermeyer A; Hays SG; Barth ZK; Patel KM; Seed KD
    Annu Rev Virol; 2021 Sep; 8(1):285-304. PubMed ID: 34314595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different genetic and morphological outcomes for phages targeted by single or multiple CRISPR-Cas spacers.
    Watson BNJ; Easingwood RA; Tong B; Wolf M; Salmond GPC; Staals RHJ; Bostina M; Fineran PC
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180090. PubMed ID: 30905290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules.
    Carpenter MR; Kalburge SS; Borowski JD; Peters MC; Colwell RR; Boyd EF
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28264992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Spacer and Protospacer Sequence Requirements in the Vibrio cholerae Type I-E CRISPR/Cas System.
    Bourgeois J; Lazinski DW; Camilli A
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33208517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
    Hoikkala V; Ravantti J; Díez-Villaseñor C; Tiirola M; Conrad RA; McBride MJ; Moineau S; Sundberg LR
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome replication dynamics of a bacteriophage and its satellite reveal strategies for parasitism and viral restriction.
    Barth ZK; Silvas TV; Angermeyer A; Seed KD
    Nucleic Acids Res; 2020 Jan; 48(1):249-263. PubMed ID: 31667508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phage parasite deploys a nicking nuclease effector to inhibit viral host replication.
    LeGault KN; Barth ZK; DePaola P; Seed KD
    Nucleic Acids Res; 2022 Aug; 50(15):8401-8417. PubMed ID: 35066583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights into DNA binding and cleavage by a compact type I-F CRISPR-Cas system in bacteriophage.
    Zhang M; Peng R; Peng Q; Liu S; Li Z; Zhang Y; Song H; Yang J; Xing X; Wang P; Qi J; Gao GF
    Proc Natl Acad Sci U S A; 2023 May; 120(18):e2215098120. PubMed ID: 37094126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.