BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 30905670)

  • 1. Mitochondria Bound to Lipid Droplets: Where Mitochondrial Dynamics Regulate Lipid Storage and Utilization.
    Benador IY; Veliova M; Liesa M; Shirihai OS
    Cell Metab; 2019 Apr; 29(4):827-835. PubMed ID: 30905670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria Bound to Lipid Droplets Have Unique Bioenergetics, Composition, and Dynamics that Support Lipid Droplet Expansion.
    Benador IY; Veliova M; Mahdaviani K; Petcherski A; Wikstrom JD; Assali EA; Acín-Pérez R; Shum M; Oliveira MF; Cinti S; Sztalryd C; Barshop WD; Wohlschlegel JA; Corkey BE; Liesa M; Shirihai OS
    Cell Metab; 2018 Apr; 27(4):869-885.e6. PubMed ID: 29617645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biology of lipid droplet-bound mitochondria.
    Veliova M; Petcherski A; Liesa M; Shirihai OS
    Semin Cell Dev Biol; 2020 Dec; 108():55-64. PubMed ID: 32446655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria isolated from lipid droplets of white adipose tissue reveal functional differences based on lipid droplet size.
    Brownstein AJ; Veliova M; Acin-Perez R; Villalobos F; Petcherski A; Tombolato A; Liesa M; Shirihai OS
    Life Sci Alliance; 2024 Feb; 7(2):. PubMed ID: 38056907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD.
    Bórquez JC; Díaz-Castro F; La Fuente FP; Espinoza K; Figueroa AM; Martínez-Ruíz I; Hernández V; López-Soldado I; Ventura R; Domingo JC; Bosch M; Fajardo A; Sebastián D; Espinosa A; Pol A; Zorzano A; Cortés V; Hernández-Alvarez MI; Troncoso R
    Metabolism; 2024 Mar; 152():155765. PubMed ID: 38142958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment.
    Yu J; Zhang S; Cui L; Wang W; Na H; Zhu X; Li L; Xu G; Yang F; Christian M; Liu P
    Biochim Biophys Acta; 2015 May; 1853(5):918-28. PubMed ID: 25655664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organelle interactions compartmentalize hepatic fatty acid trafficking and metabolism.
    Najt CP; Adhikari S; Heden TD; Cui W; Gansemer ER; Rauckhorst AJ; Markowski TW; Higgins L; Kerr EW; Boyum MD; Alvarez J; Brunko S; Mehra D; Puchner EM; Taylor EB; Mashek DG
    Cell Rep; 2023 May; 42(5):112435. PubMed ID: 37104088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fasting and refeeding induces changes in the mouse hepatic lipid droplet proteome.
    Kramer DA; Quiroga AD; Lian J; Fahlman RP; Lehner R
    J Proteomics; 2018 Jun; 181():213-224. PubMed ID: 29698803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid droplet - mitochondria coupling: A novel lipid metabolism regulatory hub in diabetic nephropathy.
    Yang M; Luo S; Yang J; Chen W; He L; Liu D; Zhao L; Wang X
    Front Endocrinol (Lausanne); 2022; 13():1017387. PubMed ID: 36387849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramolecular Spirocyclization Enables Design of a Single Fluorescent Probe for Monitoring the Interplay between Mitochondria and Lipid Droplets.
    Tian M; Ge E; Dong B; Zuo Y; Zhao Y; Lin W
    Anal Chem; 2021 Feb; 93(7):3602-3610. PubMed ID: 33557515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle.
    Ouyang Q; Chen Q; Ke S; Ding L; Yang X; Rong P; Feng W; Cao Y; Wang Q; Li M; Su S; Wei W; Liu M; Liu J; Zhang X; Li JZ; Wang HY; Chen S
    Dev Cell; 2023 Feb; 58(4):289-305.e6. PubMed ID: 36800997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zeaxanthin remodels cytoplasmic lipid droplets
    Xie J; Liu H; Yin W; Ge S; Jin Z; Zheng M; Cai D; Liu M; Liu J
    Food Funct; 2022 Aug; 13(17):8892-8906. PubMed ID: 35924967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoration of myocellular lipid droplets with perilipins as a marker for in vivo lipid droplet dynamics: A super-resolution microscopy study in trained athletes and insulin resistant individuals.
    Gemmink A; Daemen S; Brouwers B; Hoeks J; Schaart G; Knoops K; Schrauwen P; Hesselink MKC
    Biochim Biophys Acta Mol Cell Biol Lipids; 2021 Feb; 1866(2):158852. PubMed ID: 33160079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute exercise increases the contact between lipid droplets and mitochondria independently of obesity and type 2 diabetes.
    de Almeida ME; Ørtenblad N; Petersen MH; Schjerning AN; Wentorf EK; Jensen K; Højlund K; Nielsen J
    J Physiol; 2023 May; 601(10):1797-1815. PubMed ID: 37013398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics.
    Rambold AS; Cohen S; Lippincott-Schwartz J
    Dev Cell; 2015 Mar; 32(6):678-92. PubMed ID: 25752962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid droplet-mitochondria coupling via perilipin 5 augments respiratory capacity but is dispensable for FA oxidation.
    Kien B; Kolleritsch S; Kunowska N; Heier C; Chalhoub G; Tilp A; Wolinski H; Stelzl U; Haemmerle G
    J Lipid Res; 2022 Mar; 63(3):100172. PubMed ID: 35065923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylcholine reduces palmitate-induced cardiomyocyte apoptosis by promoting lipid droplet lipolysis and perilipin 5-mediated lipid droplet-mitochondria interaction.
    Wu Q; Zhao M; He X; Xue R; Li D; Yu X; Wang S; Zang W
    Cell Cycle; 2021 Sep; 20(18):1890-1906. PubMed ID: 34424820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation.
    Herms A; Bosch M; Reddy BJ; Schieber NL; Fajardo A; Rupérez C; Fernández-Vidal A; Ferguson C; Rentero C; Tebar F; Enrich C; Parton RG; Gross SP; Pol A
    Nat Commun; 2015 May; 6():7176. PubMed ID: 26013497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport.
    Miner GE; So CM; Edwards W; Ragusa JV; Wine JT; Wong Gutierrez D; Airola MV; Herring LE; Coleman RA; Klett EL; Cohen S
    Dev Cell; 2023 Jul; 58(14):1250-1265.e6. PubMed ID: 37290445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creb-Pgc1α pathway modulates the interaction between lipid droplets and mitochondria and influences high fat diet-induced changes of lipid metabolism in the liver and isolated hepatocytes of yellow catfish.
    Song YF; Hogstrand C; Ling SC; Chen GH; Luo Z
    J Nutr Biochem; 2020 Jun; 80():108364. PubMed ID: 32199344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.