BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 30905748)

  • 1. Enhancer prediction with histone modification marks using a hybrid neural network model.
    Lim A; Lim S; Kim S
    Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrapolating histone marks across developmental stages, tissues, and species: an enhancer prediction case study.
    Capra JA
    BMC Genomics; 2015 Feb; 16(1):104. PubMed ID: 25765133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RFECS: a random-forest based algorithm for enhancer identification from chromatin state.
    Rajagopal N; Xie W; Li Y; Wagner U; Wang W; Stamatoyannopoulos J; Ernst J; Kellis M; Ren B
    PLoS Comput Biol; 2013; 9(3):e1002968. PubMed ID: 23526891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved regulatory element prediction based on tissue-specific local epigenomic signatures.
    He Y; Gorkin DU; Dickel DE; Nery JR; Castanon RG; Lee AY; Shen Y; Visel A; Pennacchio LA; Ren B; Ecker JR
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):E1633-E1640. PubMed ID: 28193886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence based prediction of enhancer regions from DNA random walk.
    Singh AP; Mishra S; Jabin S
    Sci Rep; 2018 Oct; 8(1):15912. PubMed ID: 30374023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active enhancer positions can be accurately predicted from chromatin marks and collective sequence motif data.
    Podsiadło A; Wrzesień M; Paja W; Rudnicki W; Wilczyński B
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S16. PubMed ID: 24565409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HebbPlot: an intelligent tool for learning and visualizing chromatin mark signatures.
    Girgis HZ; Velasco A; Reyes ZE
    BMC Bioinformatics; 2018 Sep; 19(1):310. PubMed ID: 30176808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress and challenges in bioinformatics approaches for enhancer identification.
    Kleftogiannis D; Kalnis P; Bajic VB
    Brief Bioinform; 2016 Nov; 17(6):967-979. PubMed ID: 26634919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns.
    Osmala M; Lähdesmäki H
    BMC Bioinformatics; 2020 Jul; 21(1):317. PubMed ID: 32689977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancer recognition and prediction during spermatogenesis based on deep convolutional neural networks.
    Sun C; Zhang N; Yu P; Wu X; Li Q; Li T; Li H; Xiao X; Shalmani A; Li L; Che D; Wang X; Zhang P; Chen Z; Liu T; Zhao J; Hua J; Liao M
    Mol Omics; 2020 Oct; 16(5):455-464. PubMed ID: 32568326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of gene regulatory enhancers across species reveals evolutionarily conserved sequence properties.
    Chen L; Fish AE; Capra JA
    PLoS Comput Biol; 2018 Oct; 14(10):e1006484. PubMed ID: 30286077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of regulatory elements in mammalian genomes using chromatin signatures.
    Won KJ; Chepelev I; Ren B; Wang W
    BMC Bioinformatics; 2008 Dec; 9():547. PubMed ID: 19094206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines.
    Fernández M; Miranda-Saavedra D
    Nucleic Acids Res; 2012 May; 40(10):e77. PubMed ID: 22328731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Efficient Lightweight Hybrid Model with Attention Mechanism for Enhancer Sequence Recognition.
    Aladhadh S; Almatroodi SA; Habib S; Alabdulatif A; Khattak SU; Islam M
    Biomolecules; 2022 Dec; 13(1):. PubMed ID: 36671456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality.
    Pundhir S; Bagger FO; Lauridsen FB; Rapin N; Porse BT
    Nucleic Acids Res; 2016 May; 44(9):4037-51. PubMed ID: 27095194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm.
    Kim SG; Harwani M; Grama A; Chaterji S
    Sci Rep; 2016 Dec; 6():38433. PubMed ID: 27929098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks.
    Xiao M; Zhuang Z; Pan W
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin interaction networks revealed unique connectivity patterns of broad H3K4me3 domains and super enhancers in 3D chromatin.
    Thibodeau A; Márquez EJ; Shin DG; Vera-Licona P; Ucar D
    Sci Rep; 2017 Oct; 7(1):14466. PubMed ID: 29089515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.