These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 30905748)

  • 1. Enhancer prediction with histone modification marks using a hybrid neural network model.
    Lim A; Lim S; Kim S
    Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CatLearning: highly accurate gene expression prediction from histone mark.
    Lu W; Tang Y; Liu Y; Lin S; Shuai Q; Liang B; Zhang R; Cheng Y; Fang D
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39073831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrapolating histone marks across developmental stages, tissues, and species: an enhancer prediction case study.
    Capra JA
    BMC Genomics; 2015 Feb; 16(1):104. PubMed ID: 25765133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RFECS: a random-forest based algorithm for enhancer identification from chromatin state.
    Rajagopal N; Xie W; Li Y; Wagner U; Wang W; Stamatoyannopoulos J; Ernst J; Kellis M; Ren B
    PLoS Comput Biol; 2013; 9(3):e1002968. PubMed ID: 23526891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved regulatory element prediction based on tissue-specific local epigenomic signatures.
    He Y; Gorkin DU; Dickel DE; Nery JR; Castanon RG; Lee AY; Shen Y; Visel A; Pennacchio LA; Ren B; Ecker JR
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):E1633-E1640. PubMed ID: 28193886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence based prediction of enhancer regions from DNA random walk.
    Singh AP; Mishra S; Jabin S
    Sci Rep; 2018 Oct; 8(1):15912. PubMed ID: 30374023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active enhancer positions can be accurately predicted from chromatin marks and collective sequence motif data.
    Podsiadło A; Wrzesień M; Paja W; Rudnicki W; Wilczyński B
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S16. PubMed ID: 24565409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HebbPlot: an intelligent tool for learning and visualizing chromatin mark signatures.
    Girgis HZ; Velasco A; Reyes ZE
    BMC Bioinformatics; 2018 Sep; 19(1):310. PubMed ID: 30176808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress and challenges in bioinformatics approaches for enhancer identification.
    Kleftogiannis D; Kalnis P; Bajic VB
    Brief Bioinform; 2016 Nov; 17(6):967-979. PubMed ID: 26634919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns.
    Osmala M; Lähdesmäki H
    BMC Bioinformatics; 2020 Jul; 21(1):317. PubMed ID: 32689977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancer recognition and prediction during spermatogenesis based on deep convolutional neural networks.
    Sun C; Zhang N; Yu P; Wu X; Li Q; Li T; Li H; Xiao X; Shalmani A; Li L; Che D; Wang X; Zhang P; Chen Z; Liu T; Zhao J; Hua J; Liao M
    Mol Omics; 2020 Oct; 16(5):455-464. PubMed ID: 32568326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of gene regulatory enhancers across species reveals evolutionarily conserved sequence properties.
    Chen L; Fish AE; Capra JA
    PLoS Comput Biol; 2018 Oct; 14(10):e1006484. PubMed ID: 30286077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of regulatory elements in mammalian genomes using chromatin signatures.
    Won KJ; Chepelev I; Ren B; Wang W
    BMC Bioinformatics; 2008 Dec; 9():547. PubMed ID: 19094206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines.
    Fernández M; Miranda-Saavedra D
    Nucleic Acids Res; 2012 May; 40(10):e77. PubMed ID: 22328731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Efficient Lightweight Hybrid Model with Attention Mechanism for Enhancer Sequence Recognition.
    Aladhadh S; Almatroodi SA; Habib S; Alabdulatif A; Khattak SU; Islam M
    Biomolecules; 2022 Dec; 13(1):. PubMed ID: 36671456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality.
    Pundhir S; Bagger FO; Lauridsen FB; Rapin N; Porse BT
    Nucleic Acids Res; 2016 May; 44(9):4037-51. PubMed ID: 27095194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm.
    Kim SG; Harwani M; Grama A; Chaterji S
    Sci Rep; 2016 Dec; 6():38433. PubMed ID: 27929098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks.
    Xiao M; Zhuang Z; Pan W
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.