These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 30905848)
1. Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning. Turanli B; Zhang C; Kim W; Benfeitas R; Uhlen M; Arga KY; Mardinoglu A EBioMedicine; 2019 Apr; 42():386-396. PubMed ID: 30905848 [TBL] [Abstract][Full Text] [Related]
2. Predicting new drug indications for prostate cancer: The integration of an in silico proteochemometric network pharmacology platform with patient-derived primary prostate cells. Naeem A; Dakshanamurthy S; Walthieu H; Parasido E; Avantaggiati M; Tricoli L; Kumar D; Lee RJ; Feldman A; Noon MS; Byers S; Rodriguez O; Albanese C Prostate; 2020 Oct; 80(14):1233-1243. PubMed ID: 32761925 [TBL] [Abstract][Full Text] [Related]
3. A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer. Chen HR; Sherr DH; Hu Z; DeLisi C BMC Med Genomics; 2016 Jul; 9(1):51. PubMed ID: 27475327 [TBL] [Abstract][Full Text] [Related]
4. Using a novel computational drug-repositioning approach (DrugPredict) to rapidly identify potent drug candidates for cancer treatment. Nagaraj AB; Wang QQ; Joseph P; Zheng C; Chen Y; Kovalenko O; Singh S; Armstrong A; Resnick K; Zanotti K; Waggoner S; Xu R; DiFeo A Oncogene; 2018 Jan; 37(3):403-414. PubMed ID: 28967908 [TBL] [Abstract][Full Text] [Related]
5. Towards the routine use of in silico screenings for drug discovery using metabolic modelling. Bintener T; Pacheco MP; Sauter T Biochem Soc Trans; 2020 Jun; 48(3):955-969. PubMed ID: 32369553 [TBL] [Abstract][Full Text] [Related]
6. Identification of the perturbed metabolic pathways associating with prostate cancer cells and anticancer affects of obacunone. Xie J; Zhang AH; Qiu S; Zhang TL; Li XN; Yan GL; Sun H; Liu L; Wang XJ J Proteomics; 2019 Aug; 206():103447. PubMed ID: 31326558 [TBL] [Abstract][Full Text] [Related]
7. Structural systems pharmacology: A framework for integrating metabolic network and structure-based virtual screening for drug discovery against bacteria. Nazarshodeh E; Marashi SA; Gharaghani S PLoS One; 2021; 16(12):e0261267. PubMed ID: 34905555 [TBL] [Abstract][Full Text] [Related]
8. Integration of Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarker Involved in Prostate Cancer. Ren S; Shao Y; Zhao X; Hong CS; Wang F; Lu X; Li J; Ye G; Yan M; Zhuang Z; Xu C; Xu G; Sun Y Mol Cell Proteomics; 2016 Jan; 15(1):154-63. PubMed ID: 26545398 [TBL] [Abstract][Full Text] [Related]
9. Developing Novel Drug Candidates and Repurposed Drugs for Prostate Cancer Based on Molecular Profiles. Mokou M; Frantzi M; Mischak H; Vlahou A; Latosinska A Curr Med Chem; 2021; 28(40):8392-8415. PubMed ID: 34036903 [TBL] [Abstract][Full Text] [Related]
10. Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets. Mottini C; Napolitano F; Li Z; Gao X; Cardone L Semin Cancer Biol; 2021 Jan; 68():59-74. PubMed ID: 31562957 [TBL] [Abstract][Full Text] [Related]
11. Using functional signatures to identify repositioned drugs for breast, myelogenous leukemia and prostate cancer. Shigemizu D; Hu Z; Hung JH; Huang CL; Wang Y; DeLisi C PLoS Comput Biol; 2012 Feb; 8(2):e1002347. PubMed ID: 22346740 [TBL] [Abstract][Full Text] [Related]
12. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Ros S; Santos CR; Moco S; Baenke F; Kelly G; Howell M; Zamboni N; Schulze A Cancer Discov; 2012 Apr; 2(4):328-43. PubMed ID: 22576210 [TBL] [Abstract][Full Text] [Related]
13. Strategy for Tumor-Selective Disruption of Androgen Receptor Function in the Spectrum of Prostate Cancer. Rosati R; Polin L; Ducker C; Li J; Bao X; Selvakumar D; Kim S; Xhabija B; Larsen M; McFall T; Huang Y; Kidder BL; Fribley A; Saxton J; Kakuta H; Shaw P; Ratnam M Clin Cancer Res; 2018 Dec; 24(24):6509-6522. PubMed ID: 30185422 [TBL] [Abstract][Full Text] [Related]
14. Cell metabolomics identify regulatory pathways and targets of magnoline against prostate cancer. Sun H; Zhang AH; Liu SB; Qiu S; Li XN; Zhang TL; Liu L; Wang XJ J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Dec; 1102-1103():143-151. PubMed ID: 30391728 [TBL] [Abstract][Full Text] [Related]
15. Repositioning of antiarrhythmics for prostate cancer treatment: a novel strategy to reprogram cancer-associated fibroblasts towards a tumor-suppressive phenotype. Doldi V; Tortoreto M; Colecchia M; Maffezzini M; Percio S; Giammello F; Brandalise F; Gandellini P; Zaffaroni N J Exp Clin Cancer Res; 2024 Jun; 43(1):161. PubMed ID: 38858661 [TBL] [Abstract][Full Text] [Related]
16. Repurposing FDA approved drugs as radiosensitizers for treating hypoxic prostate cancer. Bibby BAS; Thiruthaneeswaran N; Yang L; Pereira RR; More E; McArt DG; O'Reilly P; Bristow RG; Williams KJ; Choudhury A; West CML BMC Urol; 2021 Jul; 21(1):96. PubMed ID: 34210300 [TBL] [Abstract][Full Text] [Related]
17. From DNA binding to metabolic control: integration of -omics data reveals drug targets for prostate cancer. Gao H; Dahlman-Wright K EMBO J; 2011 Jul; 30(13):2516-7. PubMed ID: 21731047 [TBL] [Abstract][Full Text] [Related]
18. Computational Discovery of Niclosamide Ethanolamine, a Repurposed Drug Candidate That Reduces Growth of Hepatocellular Carcinoma Cells In Vitro and in Mice by Inhibiting Cell Division Cycle 37 Signaling. Chen B; Wei W; Ma L; Yang B; Gill RM; Chua MS; Butte AJ; So S Gastroenterology; 2017 Jun; 152(8):2022-2036. PubMed ID: 28284560 [TBL] [Abstract][Full Text] [Related]
19. Tissue microarray profiling and integrative proteomics indicate the modulatory potential of Maytenus royleanus in inhibition of overexpressed TPD52 in prostate cancers. Shabbir M; Mukhtar H; Syed D; Razak S; Afsar T; Almajwal A; Badshah Y; Aldisi D Sci Rep; 2021 Jun; 11(1):11935. PubMed ID: 34099820 [TBL] [Abstract][Full Text] [Related]
20. Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis. Neuwirt H; Bouchal J; Kharaishvili G; Ploner C; Jöhrer K; Pitterl F; Weber A; Klocker H; Eder IE Cell Commun Signal; 2020 Jan; 18(1):11. PubMed ID: 31980029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]