These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 30905863)
1. Stabilisation of amorphous calcium phosphate in polyethylene glycol hydrogels. Schweikle M; Bjørnøy SH; van Helvoort ATJ; Haugen HJ; Sikorski P; Tiainen H Acta Biomater; 2019 May; 90():132-145. PubMed ID: 30905863 [TBL] [Abstract][Full Text] [Related]
2. A correlative spatiotemporal microscale study of calcium phosphate formation and transformation within an alginate hydrogel matrix. Bjørnøy SH; Bassett DC; Ucar S; Strand BL; Andreassen JP; Sikorski P Acta Biomater; 2016 Oct; 44():254-66. PubMed ID: 27567962 [TBL] [Abstract][Full Text] [Related]
3. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes. Leeuwenburgh SC; Jansen JA; Mikos AG J Biomater Sci Polym Ed; 2007; 18(12):1547-64. PubMed ID: 17988519 [TBL] [Abstract][Full Text] [Related]
4. A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. Zhao C; Qazvini NT; Sadati M; Zeng Z; Huang S; De La Lastra AL; Zhang L; Feng Y; Liu W; Huang B; Zhang B; Dai Z; Shen Y; Wang X; Luo W; Liu B; Lei Y; Ye Z; Zhao L; Cao D; Yang L; Chen X; Athiviraham A; Lee MJ; Wolf JM; Reid RR; Tirrell M; Huang W; de Pablo JJ; He TC ACS Appl Mater Interfaces; 2019 Mar; 11(9):8749-8762. PubMed ID: 30734555 [TBL] [Abstract][Full Text] [Related]
5. Subcutaneous tissue response and osteogenic performance of calcium phosphate nanoparticle-enriched hydrogels in the tibial medullary cavity of guinea pigs. Bongio M; van den Beucken JJ; Nejadnik MR; Tahmasebi Birgani Z; Habibovic P; Kinard LA; Kasper FK; Mikos AG; Leeuwenburgh SC; Jansen JA Acta Biomater; 2013 Mar; 9(3):5464-74. PubMed ID: 23107797 [TBL] [Abstract][Full Text] [Related]
6. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement. Rödel M; Teßmar J; Groll J; Gbureck U Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213 [TBL] [Abstract][Full Text] [Related]
7. Controlled mineralisation and recrystallisation of brushite within alginate hydrogels. Bjørnøy SH; Bassett DC; Ucar S; Andreassen JP; Sikorski P Biomed Mater; 2016 Feb; 11(1):015013. PubMed ID: 26836293 [TBL] [Abstract][Full Text] [Related]
8. Osteogenic potential of poly(ethylene glycol)-amorphous calcium phosphate composites on human mesenchymal stem cells. Chahal AS; Schweikle M; Lian AM; Reseland JE; Haugen HJ; Tiainen H J Tissue Eng; 2020; 11():2041731420926840. PubMed ID: 32537121 [TBL] [Abstract][Full Text] [Related]
9. Phosphate Functional Groups Improve Oligo[(Polyethylene Glycol) Fumarate] Osteoconduction and BMP-2 Osteoinductive Efficacy. Olthof MGL; Tryfonidou MA; Liu X; Pouran B; Meij BP; Dhert WJA; Yaszemski MJ; Lu L; Alblas J; Kempen DHR Tissue Eng Part A; 2018 May; 24(9-10):819-829. PubMed ID: 29065776 [TBL] [Abstract][Full Text] [Related]
10. Enhanced ALP activity of MG63 cells cultured on hydroxyapatite-poly(ethylene glycol) hydrogel composites prepared using EDTA-OH. Ito T; Sasaki M; Taguchi T Biomed Mater; 2015 Mar; 10(1):015025. PubMed ID: 25730608 [TBL] [Abstract][Full Text] [Related]
11. Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration. Kim MH; Kim BS; Park H; Lee J; Park WH Int J Biol Macromol; 2018 Apr; 109():57-64. PubMed ID: 29246871 [TBL] [Abstract][Full Text] [Related]
12. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
13. MV-mimicking micelles loaded with PEG-serine-ACP nanoparticles to achieve biomimetic intra/extra fibrillar mineralization of collagen in vitro. Shen M; Lin M; Zhu M; Zhang W; Lu D; Liu H; Deng J; Que K; Zhang X Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):167-181. PubMed ID: 30312770 [TBL] [Abstract][Full Text] [Related]
14. Obtaining new composite biomaterials by means of mineralization of methacrylate hydrogels using the reaction-diffusion method. Ramadan Y; González-Sánchez MI; Hawkins K; Rubio-Retama J; Valero E; Perni S; Prokopovich P; López-Cabarcos E Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():696-704. PubMed ID: 25063171 [TBL] [Abstract][Full Text] [Related]
15. Composites of gellan gum hydrogel enzymatically mineralized with calcium-zinc phosphate for bone regeneration with antibacterial activity. Douglas TEL; Pilarz M; Lopez-Heredia M; Brackman G; Schaubroeck D; Balcaen L; Bliznuk V; Dubruel P; Knabe-Ducheyne C; Vanhaecke F; Coenye T; Pamula E J Tissue Eng Regen Med; 2017 May; 11(5):1610-1618. PubMed ID: 26174042 [TBL] [Abstract][Full Text] [Related]
18. Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. Douglas TE; Krawczyk G; Pamula E; Declercq HA; Schaubroeck D; Bucko MM; Balcaen L; Van Der Voort P; Bliznuk V; van den Vreken NM; Dash M; Detsch R; Boccaccini AR; Vanhaecke F; Cornelissen M; Dubruel P J Tissue Eng Regen Med; 2016 Nov; 10(11):938-954. PubMed ID: 24616374 [TBL] [Abstract][Full Text] [Related]
19. Biodegradation and bone formation of various polyethylene glycol hydrogels in acute and chronic sites in mini-pigs. Thoma DS; Schneider D; Mir-Mari J; Hämmerle CH; Gemperli AC; Molenberg A; Dard M; Jung RE Clin Oral Implants Res; 2014 Apr; 25(4):511-21. PubMed ID: 23758284 [TBL] [Abstract][Full Text] [Related]