These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30906263)

  • 1. A Comprehensive Mathematical Model of Motor Unit Pool Organization, Surface Electromyography, and Force Generation.
    Petersen E; Rostalski P
    Front Physiol; 2019; 10():176. PubMed ID: 30906263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models of recruitment and rate coding organization in motor-unit pools.
    Fuglevand AJ; Winter DA; Patla AE
    J Neurophysiol; 1993 Dec; 70(6):2470-88. PubMed ID: 8120594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromuscular adjustments that constrain submaximal EMG amplitude at task failure of sustained isometric contractions.
    Dideriksen JL; Enoka RM; Farina D
    J Appl Physiol (1985); 2011 Aug; 111(2):485-94. PubMed ID: 21596915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources of signal-dependent noise during isometric force production.
    Jones KE; Hamilton AF; Wolpert DM
    J Neurophysiol; 2002 Sep; 88(3):1533-44. PubMed ID: 12205173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in motor unit recruitment patterns and low frequency oscillation of discharge rates between unilateral and bilateral isometric muscle contractions.
    Bao S; Wang Y; Wright DL; Buchanan JJ; Lei Y
    Hum Mov Sci; 2022 Jun; 83():102952. PubMed ID: 35468326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor-unit activation patterns in lengthening and isometric contractions of hindlimb extensor muscles in the decerebrate cat.
    Cordo PJ; Rymer WZ
    J Neurophysiol; 1982 May; 47(5):782-96. PubMed ID: 7086469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for steady isometric muscle activation.
    Studer LM; Ruegg DG; Gabriel JP
    Biol Cybern; 1999 May; 80(5):339-55. PubMed ID: 10365426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of the surface EMG of an active muscle.
    Rüegg DG; Nussbaumer R; Studer LM
    Biomed Tech (Berl); 1998; 43 Suppl 3():105-9. PubMed ID: 11776207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust and accurate decoding of motoneuron behaviour and prediction of the resulting force output.
    Thompson CK; Negro F; Johnson MD; Holmes MR; McPherson LM; Powers RK; Farina D; Heckman CJ
    J Physiol; 2018 Jul; 596(14):2643-2659. PubMed ID: 29726002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans.
    Del Vecchio A; Negro F; Holobar A; Casolo A; Folland JP; Felici F; Farina D
    J Physiol; 2019 May; 597(9):2445-2456. PubMed ID: 30768687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation.
    Crago PE; Makowski NS; Cole NM
    J Neural Eng; 2014 Oct; 11(5):056022. PubMed ID: 25242203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vastus lateralis surface and single motor unit electromyography during shortening, lengthening and isometric contractions corrected for mode-dependent differences in force-generating capacity.
    Altenburg TM; de Ruiter CJ; Verdijk PW; van Mechelen W; de Haan A
    Acta Physiol (Oxf); 2009 Jul; 196(3):315-28. PubMed ID: 19032599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography.
    Hu X; Suresh AK; Rymer WZ; Suresh NL
    J Neural Eng; 2016 Aug; 13(4):046025. PubMed ID: 27432656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface EMG-force modelling for the biceps brachii and its experimental evaluation during isometric isotonic contractions.
    Cao H; Boudaoud S; Marin F; Marque C
    Comput Methods Biomech Biomed Engin; 2015 Jul; 18(9):1014-1023. PubMed ID: 24460394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the electrical activity of skeletal muscle tissue using a multi-domain approach.
    Klotz T; Gizzi L; Yavuz UŞ; Röhrle O
    Biomech Model Mechanobiol; 2020 Feb; 19(1):335-349. PubMed ID: 31529291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of high motor unit synchronization levels on non-linear and spectral variables of the surface EMG.
    Fattorini L; Felici F; Filligoi GC; Traballesi M; Farina D
    J Neurosci Methods; 2005 Apr; 143(2):133-9. PubMed ID: 15814145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical Modelling of Surface EMG Signals Generated by Curvilinear Fibers With Approximate Conductivity Tensor.
    Ma S; Chen C; Zhao J; Han D; Sheng X; Farina D; Zhu X
    IEEE Trans Biomed Eng; 2022 Mar; 69(3):1052-1062. PubMed ID: 34529557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding.
    Del Vecchio A; Casolo A; Negro F; Scorcelletti M; Bazzucchi I; Enoka R; Felici F; Farina D
    J Physiol; 2019 Apr; 597(7):1873-1887. PubMed ID: 30727028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associations between motor unit action potential parameters and surface EMG features.
    Del Vecchio A; Negro F; Felici F; Farina D
    J Appl Physiol (1985); 2017 Oct; 123(4):835-843. PubMed ID: 28751374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherence of EMG activity and single motor unit discharge patterns in human rhythmical force production.
    Sosnoff JJ; Vaillancourt DE; Larsson L; Newell KM
    Behav Brain Res; 2005 Mar; 158(2):301-10. PubMed ID: 15698897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.