These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30906496)

  • 1. Heterodimers for in Situ Plasmonic Spectroscopy: Cu Nanoparticle Oxidation Kinetics, Kirkendall Effect, and Compensation in the Arrhenius Parameters.
    Albinsson D; Nilsson S; Antosiewicz TJ; Zhdanov VP; Langhammer C
    J Phys Chem C Nanomater Interfaces; 2019 Mar; 123(10):6284-6293. PubMed ID: 30906496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving single Cu nanoparticle oxidation and Kirkendall void formation with in situ plasmonic nanospectroscopy and electrodynamic simulations.
    Nilsson S; Albinsson D; Antosiewicz TJ; Fritzsche J; Langhammer C
    Nanoscale; 2019 Nov; 11(43):20725-20733. PubMed ID: 31650143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Plasmonic Nanospectroscopy of the CO Oxidation Reaction over Single Pt Nanoparticles.
    Liu S; Arce AS; Nilsson S; Albinsson D; Hellberg L; Alekseeva S; Langhammer C
    ACS Nano; 2019 May; 13(5):6090-6100. PubMed ID: 31091069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competing oxidation mechanisms in Cu nanoparticles and their plasmonic signatures.
    Nilsson S; Nielsen MR; Fritzsche J; Langhammer C; Kadkhodazadeh S
    Nanoscale; 2022 Jun; 14(23):8332-8341. PubMed ID: 35616189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Electron Microscopy of Transformations of Copper Nanoparticles under Plasmonic Excitation.
    Alcorn FM; van der Veen RM; Jain PK
    Nano Lett; 2023 Jul; 23(14):6520-6527. PubMed ID: 37399502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time plasmon spectroscopy study of the solid-state oxidation and Kirkendall void formation in copper nanoparticles.
    Susman MD; Feldman Y; Bendikov TA; Vaskevich A; Rubinstein I
    Nanoscale; 2017 Aug; 9(34):12573-12589. PubMed ID: 28820220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO
    DeSario PA; Pietron JJ; Brintlinger TH; McEntee M; Parker JF; Baturina O; Stroud RM; Rolison DR
    Nanoscale; 2017 Aug; 9(32):11720-11729. PubMed ID: 28776054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Silver-Palladium Alloyed Nanoparticles for Plasmonic Catalysis under Visible-Light Illumination.
    Peiris E; Hanauer S; Knapas K; Camargo PHC
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32894264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy.
    Swearer DF; Bourgeois BB; Angell DK; Dionne JA
    Acc Chem Res; 2021 Oct; 54(19):3632-3642. PubMed ID: 34492177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Nanospectroscopy of Platinum Catalyst Nanoparticle Sintering in a Mesoporous Alumina Support.
    Tabib Zadeh Adibi P; Pingel T; Olsson E; Grönbeck H; Langhammer C
    ACS Nano; 2016 May; 10(5):5063-9. PubMed ID: 27158734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing the Cu/Cu2(O) Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy.
    LaGrow AP; Ward MR; Lloyd DC; Gai PL; Boyes ED
    J Am Chem Soc; 2017 Jan; 139(1):179-185. PubMed ID: 27936677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bulk-Processed Plasmonic Plastic Nanocomposite Materials for Optical Hydrogen Detection.
    Darmadi I; Östergren I; Lerch S; Lund A; Moth-Poulsen K; Müller C; Langhammer C
    Acc Chem Res; 2023 Jul; 56(13):1850-1861. PubMed ID: 37352016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Plasmonic Gold@Copper Sulfide Core-Shell Nanoparticles: Phase-Selective Synthesis and Multimodal Photothermal and Photocatalytic Behaviors.
    Sun M; Fu X; Chen K; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46146-46161. PubMed ID: 32955860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible-light Induced Reduction of Graphene Oxide Using Plasmonic Nanoparticle.
    Kumar D; Lee AR; Kaur S; Lim DK
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26436539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Operando Photoswitching of Cu Oxidation States in Cu-Based Plasmonic Heterogeneous Photocatalysis for Efficient H
    Liu P; Dörfler A; Tabrizi AA; Skokan L; Rawach D; Wang P; Peng Z; Zhang J; Ruediger AP; Claverie JP
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):27832-27844. PubMed ID: 37257196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.
    Hermann RJ; Gordon MJ
    Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Femtosecond Pulsed Laser-Induced Atomic Redistribution in Bimetallic Au-Pd Nanorods on Optoelectronic and Catalytic Properties.
    Nazemi M; Panikkanvalappil SR; Liao CK; Mahmoud MA; El-Sayed MA
    ACS Nano; 2021 Jun; 15(6):10241-10252. PubMed ID: 34032116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.