BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30906996)

  • 1. Copper tolerance and antibiotic resistance in soil bacteria from olive tree agricultural fields routinely treated with copper compounds.
    Glibota N; Grande Burgos MJ; Gálvez A; Ortega E
    J Sci Food Agric; 2019 Aug; 99(10):4677-4685. PubMed ID: 30906996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal tolerance and antibiotic resistance patterns of a bacterial population isolated from sea water.
    Sabry SA; Ghozlan HA; Abou-Zeid DM
    J Appl Microbiol; 1997 Feb; 82(2):245-52. PubMed ID: 12452601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses.
    Safari Sinegani AA; Younessi N
    J Glob Antimicrob Resist; 2017 Sep; 10():247-255. PubMed ID: 28732786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay.
    Berg J; Thorsen MK; Holm PE; Jensen J; Nybroe O; Brandt KK
    Environ Sci Technol; 2010 Nov; 44(22):8724-8. PubMed ID: 20964403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils.
    Hu HW; Wang JT; Li J; Li JJ; Ma YB; Chen D; He JZ
    Environ Microbiol; 2016 Nov; 18(11):3896-3909. PubMed ID: 27207327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteriological quality, heavy metal and antibiotic resistance in Sapanca Lake, Turkey.
    Çiftçi Türetken PS; Altuğ G; Çardak M; Güneş K
    Environ Monit Assess; 2019 Jun; 191(7):469. PubMed ID: 31243556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field.
    Berg J; Tom-Petersen A; Nybroe O
    Lett Appl Microbiol; 2005; 40(2):146-51. PubMed ID: 15644115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of multi drug resistance among soil bacteria exposing to insecticides.
    Rangasamy K; Athiappan M; Devarajan N; Parray JA
    Microb Pathog; 2017 Apr; 105():153-165. PubMed ID: 28192223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system.
    Resende JA; Silva VL; Fontes CO; Souza-Filho JA; Rocha de Oliveira TL; Coelho CM; César DE; Diniz CG
    Microbes Environ; 2012; 27(4):449-55. PubMed ID: 22972388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Determinants for Metal Tolerance and Antimicrobial Resistance Detected in Bacteria Isolated from Soils of Olive Tree Farms.
    Glibota N; Grande MJ; Galvez A; Ortega E
    Antibiotics (Basel); 2020 Aug; 9(8):. PubMed ID: 32756388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water.
    Calomiris JJ; Armstrong JL; Seidler RJ
    Appl Environ Microbiol; 1984 Jun; 47(6):1238-42. PubMed ID: 6742841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings.
    Zhang WH; Huang Z; He LY; Sheng XF
    Chemosphere; 2012 Jun; 87(10):1171-8. PubMed ID: 22397839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of heavy metals by Pseudomonas species isolated from sugar industry.
    Naz T; Khan MD; Ahmed I; Rehman SU; Rha ES; Malook I; Jamil M
    Toxicol Ind Health; 2016 Sep; 32(9):1619-27. PubMed ID: 25739395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of heavy metal-resistance in microflora from serpentine soil of Andaman.
    Pal A; Dutta S; Mukherjee PK; Paul AK
    J Basic Microbiol; 2005; 45(3):207-18. PubMed ID: 15900542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria.
    Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M
    Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibiotic resistance of bacteria in raw and biologically treated sewage and in groundwater below leaking sewers.
    Gallert C; Fund K; Winter J
    Appl Microbiol Biotechnol; 2005 Nov; 69(1):106-12. PubMed ID: 16001254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal pollution and co-selection for antibiotic resistance: A microbial palaeontology approach.
    Dickinson AW; Power A; Hansen MG; Brandt KK; Piliposian G; Appleby P; O'Neill PA; Jones RT; Sierocinski P; Koskella B; Vos M
    Environ Int; 2019 Nov; 132():105117. PubMed ID: 31473413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of bacterial communities in heavy metal contaminated soils.
    Roane TM; Kellogg ST
    Can J Microbiol; 1996 Jun; 42(6):593-603. PubMed ID: 8801006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties.
    Deredjian A; Alliot N; Blanchard L; Brothier E; Anane M; Cambier P; Jolivet C; Khelil MN; Nazaret S; Saby N; Thioulouse J; Favre-Bonté S
    Res Microbiol; 2016 May; 167(4):313-324. PubMed ID: 26774914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens.
    Chen YX; Wang YP; Lin Q; Luo YM
    Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.