These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 30907036)
1. Uniform Distribution of Alloying/Dealloying Stress for High Structural Stability of an Al Anode in High-Areal-Density Lithium-Ion Batteries. Zhang M; Xiang L; Galluzzi M; Jiang C; Zhang S; Li J; Tang Y Adv Mater; 2019 May; 31(18):e1900826. PubMed ID: 30907036 [TBL] [Abstract][Full Text] [Related]
2. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries. Liu D; Liu ZJ; Li X; Xie W; Wang Q; Liu Q; Fu Y; He D Small; 2017 Dec; 13(45):. PubMed ID: 29024532 [TBL] [Abstract][Full Text] [Related]
3. Architectural Engineering Achieves High-Performance Alloying Anodes for Lithium and Sodium Ion Batteries. Guo S; Feng Y; Wang L; Jiang Y; Yu Y; Hu X Small; 2021 May; 17(19):e2005248. PubMed ID: 33734598 [TBL] [Abstract][Full Text] [Related]
4. Alloying Reaction Confinement Enables High-Capacity and Stable Anodes for Lithium-Ion Batteries. Fang S; Shen L; Li S; Kim GT; Bresser D; Zhang H; Zhang X; Maier J; Passerini S ACS Nano; 2019 Aug; 13(8):9511-9519. PubMed ID: 31335123 [TBL] [Abstract][Full Text] [Related]
5. Full-Cell Cycling of a Self-Supporting Aluminum Foil Anode with a Phosphate Conversion Coating. Jiang M; Yu Y; Fan H; Xu H; Zheng Y; Huang Y; Li S; Li J ACS Appl Mater Interfaces; 2019 May; 11(17):15656-15661. PubMed ID: 30951279 [TBL] [Abstract][Full Text] [Related]
6. Bubble-Sheet-Like Interface Design with an Ultrastable Solid Electrolyte Layer for High-Performance Dual-Ion Batteries. Qin P; Wang M; Li N; Zhu H; Ding X; Tang Y Adv Mater; 2017 May; 29(17):. PubMed ID: 28224685 [TBL] [Abstract][Full Text] [Related]
7. Sheet-Like Stacking SnS Liu J; Chang Y; Sun K; Guo P; Cao D; Ma Y; Liu D; Liu Q; Fu Y; Liu J; He D ACS Appl Mater Interfaces; 2022 Mar; 14(9):11739-11749. PubMed ID: 35200005 [TBL] [Abstract][Full Text] [Related]
8. Silver boosts ultra-long cycle life for metal sulfide lithium-ion battery anodes: Taking AgSbS Ho SF; Yang YC; Tuan HY J Colloid Interface Sci; 2022 Sep; 621():416-430. PubMed ID: 35483175 [TBL] [Abstract][Full Text] [Related]
9. The interface engineering and structure design of an alloying-type metal foil anode for lithium ion batteries: a review. Wang R; Sun S; Xu C; Cai J; Gou H; Zhang X; Wang G Mater Horiz; 2024 Feb; 11(4):903-922. PubMed ID: 38084018 [TBL] [Abstract][Full Text] [Related]
10. A germanium and zinc chalcogenide as an anode for a high-capacity and long cycle life lithium battery. Chen X; Zhou J; Li J; Luo H; Mei L; Wang T; Zhu J; Zhang Y RSC Adv; 2019 Oct; 9(60):35045-35049. PubMed ID: 35530709 [TBL] [Abstract][Full Text] [Related]
11. Significant Strain Dissipation via Stiff-Tough Solid Electrolyte Interphase Design for Highly Stable Alloying Anodes. Jiang C; Yan J; Wang D; Yan K; Shi L; Zheng Y; Xie C; Cheng HM; Tang Y Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202314509. PubMed ID: 37884441 [TBL] [Abstract][Full Text] [Related]
12. Low-cost batteries based on industrial waste Al-Si microparticles and LiFePO Zhang N; Sun C; Huang Y; Lv L; Wu Z; Zhu C; Wang X; Xiao X; Fan X; Chen L Dalton Trans; 2021 Jun; 50(24):8322-8329. PubMed ID: 34037045 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and Electrochemical Properties of Amorphous Carbon Coated Sn Anode Material for Lithium Ion Batteries and Sodium Ion Batteries. Choi JS; Lee HJ; Ha JK; Cho KK J Nanosci Nanotechnol; 2018 Sep; 18(9):6459-6462. PubMed ID: 29677814 [TBL] [Abstract][Full Text] [Related]
14. Ultrahigh-Areal-Capacity Battery Anodes Enabled by Free-Standing Vanadium Nitride@N-Doped Carbon/Graphene Architecture. Li C; Zhu L; Qi S; Ge W; Ma W; Zhao Y; Huang R; Xu L; Qian Y ACS Appl Mater Interfaces; 2020 Nov; 12(44):49607-49616. PubMed ID: 33104326 [TBL] [Abstract][Full Text] [Related]
15. In Situ Synthesis and Characterization of Ge Embedded Electrospun Carbon Nanostructures as High Performance Anode Material for Lithium-Ion Batteries. Lee YW; Kim DM; Kim SJ; Kim MC; Choe HS; Lee KH; Sohn JI; Cha SN; Kim JM; Park KW ACS Appl Mater Interfaces; 2016 Mar; 8(11):7022-9. PubMed ID: 26895137 [TBL] [Abstract][Full Text] [Related]
16. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries. Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912 [TBL] [Abstract][Full Text] [Related]
17. Effect of Amount of Aluminum on the Performance of Si-Al Codeposited Anodes for Lithium Batteries. Patil V; Patil A; Yoon SJ; Choi JW J Nanosci Nanotechnol; 2015 Nov; 15(11):8912-6. PubMed ID: 26726617 [TBL] [Abstract][Full Text] [Related]
18. In Situ Formed LiZn Alloy Skeleton for Stable Lithium Anodes. Ouyang Y; Cui C; Guo Y; Wei Y; Zhai T; Li H ACS Appl Mater Interfaces; 2020 Jun; 12(23):25818-25825. PubMed ID: 32396325 [TBL] [Abstract][Full Text] [Related]
19. Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets. Zheng Z; Wu HH; Liu H; Zhang Q; He X; Yu S; Petrova V; Feng J; Kostecki R; Liu P; Peng DL; Liu M; Wang MS ACS Nano; 2020 Aug; 14(8):9545-9561. PubMed ID: 32658458 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional SnO2/carbon on Cu foam for high-performance lithium ion battery anodes. Chen W; Maloney S; Wang W Nanotechnology; 2016 Oct; 27(41):415401. PubMed ID: 27587237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]