These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 30907041)
1. A Tandem Organic Solar Cell with PCE of 14.52% Employing Subcells with the Same Polymer Donor and Two Absorption Complementary Acceptors. Meng L; Yi YQ; Wan X; Zhang Y; Ke X; Kan B; Wang Y; Xia R; Yip HL; Li C; Chen Y Adv Mater; 2019 May; 31(18):e1804723. PubMed ID: 30907041 [TBL] [Abstract][Full Text] [Related]
2. Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11. Zhang Y; Kan B; Sun Y; Wang Y; Xia R; Ke X; Yi YQ; Li C; Yip HL; Wan X; Cao Y; Chen Y Adv Mater; 2018 May; 30(18):e1707508. PubMed ID: 29575107 [TBL] [Abstract][Full Text] [Related]
3. A Near-Infrared Photoactive Morphology Modifier Leads to Significant Current Improvement and Energy Loss Mitigation for Ternary Organic Solar Cells. Zhan L; Li S; Zhang H; Gao F; Lau TK; Lu X; Sun D; Wang P; Shi M; Li CZ; Chen H Adv Sci (Weinh); 2018 Aug; 5(8):1800755. PubMed ID: 30128263 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of ITIC Derivatives with Extended π-Conjugation as Non-Fullerene Acceptors for Organic Solar Cells. Kim HS; Song CE; Ha JW; Lee S; Rasool S; Lee HK; Shin WS; Hwang DH ACS Appl Mater Interfaces; 2019 Dec; 11(50):47121-47130. PubMed ID: 31755688 [TBL] [Abstract][Full Text] [Related]
6. Exploiting Novel Unfused-Ring Acceptor for Efficient Organic Solar Cells with Record Open-Circuit Voltage and Fill Factor. Liu Z; Mao Q; Wang J; Wu F; Zhou D; Cheng Y; Huang S; Huang B; Yang C; Chen L ChemSusChem; 2022 Feb; 15(4):e202102563. PubMed ID: 34964305 [TBL] [Abstract][Full Text] [Related]
7. High-Efficiency Polymer:Nonfullerene Solar Cells with Quaterthiophene-Containing Polyimide Interlayers. Park E; Seo J; Han H; Kim H; Kim Y Adv Sci (Weinh); 2018 Aug; 5(8):1800331. PubMed ID: 30128242 [TBL] [Abstract][Full Text] [Related]
8. High-performance inverted tandem polymer solar cells utilizing thieno[3,4-c]pyrrole-4,6-dione copolymer. Yusoff AR; Lee SJ; Kim J; Shneider FK; da Silva WJ; Jang J ACS Appl Mater Interfaces; 2014 Aug; 6(15):13079-87. PubMed ID: 24967661 [TBL] [Abstract][Full Text] [Related]
9. 13%-Efficiency Quaternary Polymer Solar Cell with Nonfullerene and Fullerene as Mixed Electron Acceptor Materials. Yan D; Xin J; Li W; Liu S; Wu H; Ma W; Yao J; Zhan C ACS Appl Mater Interfaces; 2019 Jan; 11(1):766-773. PubMed ID: 30525389 [TBL] [Abstract][Full Text] [Related]
10. Low-Energy-Loss Polymer Solar Cells with 14.52% Efficiency Enabled by Wide-Band-Gap Copolymers. Feng K; Yuan J; Bi Z; Ma W; Xu X; Zhang G; Peng Q iScience; 2019 Feb; 12():1-12. PubMed ID: 30665194 [TBL] [Abstract][Full Text] [Related]
11. From Straw to Device Interface: Carboxymethyl-Cellulose-Based Modified Interlayer for Enhanced Power Conversion Efficiency of Organic Solar Cells. Wu J; Liu Y; Islam A; Zheng Q; Li J; Ji W; Chen L; Ouyang X Adv Sci (Weinh); 2020 Jan; 7(2):1902269. PubMed ID: 31993292 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells. Zhan L; Li S; Zhang S; Chen X; Lau TK; Lu X; Shi M; Li CZ; Chen H ACS Appl Mater Interfaces; 2018 Dec; 10(49):42444-42452. PubMed ID: 30444596 [TBL] [Abstract][Full Text] [Related]
13. Symmetry-Induced Ordered Assembly of a Naphthobisthiadiazole-Based Nonfused-Ring Electron Acceptor Enables Efficient Organic Solar Cells. Song KC; Sung W; Lee DC; Chung S; Lee H; Lee J; Cho S; Cho K ACS Appl Mater Interfaces; 2022 Nov; 14(46):52233-52243. PubMed ID: 36355863 [TBL] [Abstract][Full Text] [Related]
14. Effect of dihydronaphthyl-based C60 bisadduct as third component materials on the photovoltaic performance and charge carrier recombination of binary PBDB-T : ITIC polymer solar cells. Niu S; Liu Z; Wang N Nanoscale; 2018 May; 10(18):8483-8495. PubMed ID: 29693093 [TBL] [Abstract][Full Text] [Related]
15. Closely packed, low reorganization energy π-extended postfullerene acceptors for efficient polymer solar cells. Swick SM; Zhu W; Matta M; Aldrich TJ; Harbuzaru A; Lopez Navarrete JT; Ponce Ortiz R; Kohlstedt KL; Schatz GC; Facchetti A; Melkonyan FS; Marks TJ Proc Natl Acad Sci U S A; 2018 Sep; 115(36):E8341-E8348. PubMed ID: 30127011 [TBL] [Abstract][Full Text] [Related]
16. Additive and High-Temperature Processing Boost the Photovoltaic Performance of Nonfullerene Organic Solar Cells Fabricated with Blade Coating and Nonhalogenated Solvents. Li Y; Liu H; Wu J; Tang H; Wang H; Yang Q; Fu Y; Xie Z ACS Appl Mater Interfaces; 2021 Mar; 13(8):10239-10248. PubMed ID: 33605134 [TBL] [Abstract][Full Text] [Related]
17. Isomerically Pure Benzothiophene-Incorporated Acceptor: Achieving Improved Chang SL; Hung KE; Cao FY; Huang KH; Hsu CS; Liao CY; Lee CH; Cheng YJ ACS Appl Mater Interfaces; 2019 Sep; 11(36):33179-33187. PubMed ID: 31416309 [TBL] [Abstract][Full Text] [Related]
18. Two Well-Miscible Acceptors Work as One for Efficient Fullerene-Free Organic Solar Cells. Yu R; Zhang S; Yao H; Guo B; Li S; Zhang H; Zhang M; Hou J Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28466960 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic Study of Charge Separation in a Nonfullerene Organic Donor-Acceptor Blend Using Multispectral Multidimensional Spectroscopy. Song Y; Liu X; Li Y; Nguyen HH; Duan R; Kubarych KJ; Forrest SR; Ogilvie JP J Phys Chem Lett; 2021 Apr; 12(13):3410-3416. PubMed ID: 33788566 [TBL] [Abstract][Full Text] [Related]
20. Modulating Structure Ordering via Side-Chain Engineering of Thieno[3,4- Liu F; Zhang J; Wang Y; Chen S; Zhou Z; Yang C; Gao F; Zhu X ACS Appl Mater Interfaces; 2019 Sep; 11(38):35193-35200. PubMed ID: 31405275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]