These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 30907087)
1. An Unexpected Ireland-Claisen Rearrangement Cascade During the Synthesis of the Tricyclic Core of Curcusone C: Mechanistic Elucidation by Trial-and-Error and Automatic Artificial Force-Induced Reaction (AFIR) Computations. Lee CW; Taylor BLH; Petrova GP; Patel A; Morokuma K; Houk KN; Stoltz BM J Am Chem Soc; 2019 May; 141(17):6995-7004. PubMed ID: 30907087 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic insight into the formal [1,3]-migration in the thermal Claisen rearrangement. Hou S; Li X; Xu J J Org Chem; 2012 Dec; 77(23):10856-69. PubMed ID: 23150994 [TBL] [Abstract][Full Text] [Related]
3. Design, development, mechanistic elucidation, and rational optimization of a tandem Ireland Claisen/Cope rearrangement reaction for rapid access to the (iso)cyclocitrinol core. Plummer CW; Wei CS; Yozwiak CE; Soheili A; Smithback SO; Leighton JL J Am Chem Soc; 2014 Jul; 136(28):9878-81. PubMed ID: 24967720 [TBL] [Abstract][Full Text] [Related]
4. 1,5-Allyl Shift by a Sequential Achmatowicz/Oxonia-Cope/Retro-Achmatowicz Rearrangement. Zhang X; Tong Y; Li G; Zhao H; Chen G; Yao H; Tong R Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202205919. PubMed ID: 35670657 [TBL] [Abstract][Full Text] [Related]
5. Total Synthesis and Target Identification of the Curcusone Diterpenes. Cui C; Dwyer BG; Liu C; Abegg D; Cai ZJ; Hoch DG; Yin X; Qiu N; Liu JQ; Adibekian A; Dai M J Am Chem Soc; 2021 Mar; 143(11):4379-4386. PubMed ID: 33705657 [TBL] [Abstract][Full Text] [Related]
6. Biosynthesis of Grandione: An Example of Tandem Hetero Diels-Alder/Retro-Claisen Rearrangement Reaction? Quijano-Quiñones RF; Castro-Segura CS; Mena-Rejón GJ; Quesadas-Rojas M; Cáceres-Castillo D Molecules; 2018 Sep; 23(10):. PubMed ID: 30274324 [TBL] [Abstract][Full Text] [Related]
7. Rearrangements of the Chrysanthenol Core: Application to a Formal Synthesis of Xishacorene B. Jones KE; Park B; Doering NA; Baik MH; Sarpong R J Am Chem Soc; 2021 Dec; 143(48):20482-20490. PubMed ID: 34812038 [TBL] [Abstract][Full Text] [Related]
8. One-Pot Synthesis of Metastable 2,5-Dihydrooxepines through Retro-Claisen Rearrangements: Method and Applications. Zhang W; Baudouin E; Cordier M; Frison G; Nay B Chemistry; 2019 Jun; 25(36):8643-8648. PubMed ID: 31033060 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of chiral building blocks for oxygenated terpenoids through a simultaneous and stereocontrolled construction of contiguous quaternary stereocenters by an Ireland-Claisen rearrangement. Akahori Y; Yamakoshi H; Sawayama Y; Hashimoto S; Nakamura S J Org Chem; 2014 Jan; 79(2):720-35. PubMed ID: 24344796 [TBL] [Abstract][Full Text] [Related]
10. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces. Maeda S; Harabuchi Y; Takagi M; Taketsugu T; Morokuma K Chem Rec; 2016 Oct; 16(5):2232-2248. PubMed ID: 27258568 [TBL] [Abstract][Full Text] [Related]
11. Size-Exclusion Borane-Catalyzed Domino 1,3-Allylic/Reductive Ireland-Claisen Rearrangements: Impact of the Electronic and Structural Parameters on the 1,3-Allylic Shift Aptitude. Fegyverneki D; Kolozsvári N; Molnár D; Egyed O; Holczbauer T; Soós T Chemistry; 2019 Feb; 25(9):2179-2183. PubMed ID: 30466176 [TBL] [Abstract][Full Text] [Related]
12. N[1,3]-Sigmatropic shift in the benzidine rearrangement: experimental and theoretical investigation. Hou S; Li X; Xu J Org Biomol Chem; 2014 Jul; 12(27):4952-63. PubMed ID: 24879467 [TBL] [Abstract][Full Text] [Related]
13. Tandem enyne metathesis and claisen rearrangement: a versatile approach to conjugated dienes of variable substitution patterns. Clark DA; Kulkarni AA; Kalbarczyk K; Schertzer B; Diver ST J Am Chem Soc; 2006 Dec; 128(49):15632-6. PubMed ID: 17147371 [TBL] [Abstract][Full Text] [Related]
14. Computational Exploration of the Thermal Rearrangement of Basketene: One Forbidden versus Two Allowed Pericyclic Reactions. Yue X; Zhou Q; Houk KN J Org Chem; 2023 Oct; 88(20):14303-14307. PubMed ID: 37768874 [TBL] [Abstract][Full Text] [Related]
15. Prediction of High-Yielding Single-Step or Cascade Pericyclic Reactions for the Synthesis of Complex Synthetic Targets. Mita T; Takano H; Hayashi H; Kanna W; Harabuchi Y; Houk KN; Maeda S J Am Chem Soc; 2022 Dec; 144(50):22985-23000. PubMed ID: 36451276 [TBL] [Abstract][Full Text] [Related]
16. Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method. Maeda S; Taketsugu T; Morokuma K J Comput Chem; 2014 Jan; 35(2):166-73. PubMed ID: 24186858 [TBL] [Abstract][Full Text] [Related]
17. Theoretical calculation studies on the rearrangement mechanisms of arenesulfenanilides to generate o- and p-aminodiphenyl sulfides. Liu G; Hou S; Xu J Org Biomol Chem; 2019 Dec; 17(47):10088-10096. PubMed ID: 31754666 [TBL] [Abstract][Full Text] [Related]
18. Catalytic asymmetric claisen rearrangement in natural product synthesis: synthetic studies toward (-)-xeniolide F. Pollex A; Hiersemann M Org Lett; 2005 Dec; 7(25):5705-8. PubMed ID: 16321027 [TBL] [Abstract][Full Text] [Related]