These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30907480)

  • 1. Low f-Number Diffraction-Limited Pancharatnam-Berry Microlenses Enabled by Plasmonic Photopatterning of Liquid Crystal Polymers.
    Jiang M; Guo Y; Yu H; Zhou Z; Turiv T; Lavrentovich OD; Wei QH
    Adv Mater; 2019 May; 31(18):e1808028. PubMed ID: 30907480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast switching ferroelectric liquid crystal Pancharatnam-Berry lens.
    Ma Y; Tam AMW; Gan XT; Shi LY; Srivastava AK; Chigrinov VG; Kwok HS; Zhao JL
    Opt Express; 2019 Apr; 27(7):10079-10086. PubMed ID: 31045154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-controlled liquid crystal Pancharatnam-Berry phase lens with broadband operation and high photo-stability.
    Wang CT; Tam A; Meng C; Tseng MC; Li G; Kwok HS
    Opt Lett; 2020 Oct; 45(19):5323-5326. PubMed ID: 33001884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-exposure fabrication of tunable Pancharatnam-Berry devices using a dye-doped liquid crystal.
    Li Y; Liu Y; Li S; Zhou P; Zhan T; Chen Q; Su Y; Wu ST
    Opt Express; 2019 Mar; 27(6):9054-9060. PubMed ID: 31052714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Pancharatnam-Berry phase optical elements with highly stable polarization holography.
    Zhan T; Xiong J; Lee YH; Chen R; Wu ST
    Opt Express; 2019 Feb; 27(3):2632-2642. PubMed ID: 30732298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast-response Pancharatnam-Berry phase optical elements based on polymer-stabilized liquid crystal.
    Li S; Liu Y; Li Y; Liu S; Chen S; Su Y
    Opt Express; 2019 Aug; 27(16):22522-22531. PubMed ID: 31510543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatic aberration correction in bi-focal augmented reality display by the multi-layer Pancharatnam-Berry phase lens.
    Ma Y; Zhang W; Liu Y; Tian T; Luo D
    Opt Express; 2022 May; 30(11):18772-18780. PubMed ID: 36221671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffraction-limited blazed reflection diffractive microlenses for oblique incidence fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Appl Opt; 1991 Sep; 30(25):3643-9. PubMed ID: 20706439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced optical edge detection based on a Pancharatnam-Berry flat lens with a large focal length.
    Li T; Yang Y; Liu X; Wu Y; Zhou Y; Huang S; Li X; Huang H
    Opt Lett; 2020 Jul; 45(13):3681-3684. PubMed ID: 32630929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of independently controllable multiple focal spots from segmented Pancharatnam-Berry phases.
    Li P; Guo X; Qi S; Han L; Zhang Y; Liu S; Li Y; Zhao J
    Sci Rep; 2018 Jun; 8(1):9831. PubMed ID: 29959390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization-independent Pancharatnam-Berry phase lens system.
    Zhan T; Xiong J; Lee YH; Wu ST
    Opt Express; 2018 Dec; 26(26):35026-35033. PubMed ID: 30650917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable oscillated spin Hall effect of Bessel beam realized by liquid crystal Pancharatnam-Berry phase elements.
    Liu S; Qi S; Li Y; Wei B; Li P; Zhao J
    Light Sci Appl; 2022 Jul; 11(1):219. PubMed ID: 35821002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correcting the wavelength-induced phase deviation of Pancharatnam-Berry lenses.
    Luo Z; Zou J; Zhao E; Rao Y; Wu ST
    Opt Express; 2022 Sep; 30(20):36644-36650. PubMed ID: 36258588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorful multi-plane augmented reality display with dynamically tunable reflective Pancharatnam-Berry phase lens.
    Yan X; Zhu J; Liu M; Liu Y; Luo D
    Opt Express; 2024 Mar; 32(6):9161-9170. PubMed ID: 38571155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of microlenses with long focal depth based on the general focal length function.
    Lin J; Liu J; Ye J; Liu S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1747-51. PubMed ID: 17491644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of microlens arrays using a cantilever-based spotter.
    Bardinal V; Daran E; Leïchlé T; Vergnenègre C; Levallois C; Camps T; Conedera V; Doucet JB; Carcenac F; Ottevaere H; Thienpont H
    Opt Express; 2007 May; 15(11):6900-7. PubMed ID: 19547004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact polarization-resolved common-path digital holography based on the Pancharatnam-Berry phase.
    Zhang J; Dou J; Zhang M; Qi S; Zhao J
    Opt Lett; 2021 Dec; 46(23):5862-5865. PubMed ID: 34851909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control.
    Cong L; Xu N; Han J; Zhang W; Singh R
    Adv Mater; 2015 Nov; 27(42):6630-6. PubMed ID: 26421902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pancharatnam-Berry phase shaping for control of the transverse enhancement of focusing.
    Man Z; Dou X; Fu S
    Opt Lett; 2019 Jan; 44(2):427-430. PubMed ID: 30644917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pancharatnam-Berry phase reversal via opposite-chirality-coexisted superstructures.
    Zhu L; Xu CT; Chen P; Zhang YH; Liu SJ; Chen QM; Ge SJ; Hu W; Lu YQ
    Light Sci Appl; 2022 May; 11(1):135. PubMed ID: 35551179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.