These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 30907587)
1. Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes. Smith RC; Taggart RK; Hower JC; Wiesner MR; Hsu-Kim H Environ Sci Technol; 2019 Apr; 53(8):4490-4499. PubMed ID: 30907587 [TBL] [Abstract][Full Text] [Related]
2. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes. Taggart RK; Hower JC; Dwyer GS; Hsu-Kim H Environ Sci Technol; 2016 Jun; 50(11):5919-26. PubMed ID: 27228215 [TBL] [Abstract][Full Text] [Related]
3. Recovery of Rare Earth Elements from Acid Mine Drainage with Supported Liquid Membranes: Impacts of Feedstock Composition for Extraction Performance. Middleton A; Hedin BC; Hsu-Kim H Environ Sci Technol; 2024 Feb; 58(6):2998-3006. PubMed ID: 38287223 [TBL] [Abstract][Full Text] [Related]
4. Preferential Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid. Stoy L; Diaz V; Huang CH Environ Sci Technol; 2021 Jul; 55(13):9209-9220. PubMed ID: 34159779 [TBL] [Abstract][Full Text] [Related]
5. Differences in bulk and microscale yttrium speciation in coal combustion fly ash. Taggart RK; Rivera NA; Levard C; Ambrosi JP; Borschneck D; Hower JC; Hsu-Kim H Environ Sci Process Impacts; 2018 Oct; 20(10):1390-1403. PubMed ID: 30264835 [TBL] [Abstract][Full Text] [Related]
6. Green Approach for Rare Earth Element (REE) Recovery from Coal Fly Ash. Liu P; Zhao S; Xie N; Yang L; Wang Q; Wen Y; Chen H; Tang Y Environ Sci Technol; 2023 Apr; 57(13):5414-5423. PubMed ID: 36942728 [TBL] [Abstract][Full Text] [Related]
7. Phosphate Polymer Nanogel for Selective and Efficient Rare Earth Element Recovery. Zhang Y; Yan J; Xu J; Tian C; Matyjaszewski K; Tilton RD; Lowry GV Environ Sci Technol; 2021 Sep; 55(18):12549-12560. PubMed ID: 34464106 [TBL] [Abstract][Full Text] [Related]
8. From Ashes to Riches: Microscale Phenomena Controlling Rare Earths Recovery from Coal Fly Ash. Gerardo S; Davletshin AR; Loewy SL; Song W Environ Sci Technol; 2022 Nov; 56(22):16200-16208. PubMed ID: 36240063 [TBL] [Abstract][Full Text] [Related]
9. Characterization of rare earth elements present in coal ash by sequential extraction. Park S; Kim M; Lim Y; Yu J; Chen S; Woo SW; Yoon S; Bae S; Kim HS J Hazard Mater; 2021 Jan; 402():123760. PubMed ID: 33254773 [TBL] [Abstract][Full Text] [Related]
10. Enrichment and occurrence form of rare earth elements during coal and coal gangue combustion. Wu G; Shi N; Wang T; Cheng CM; Wang J; Tian C; Pan WP Environ Sci Pollut Res Int; 2022 Jun; 29(29):44709-44722. PubMed ID: 35133594 [TBL] [Abstract][Full Text] [Related]
11. Recovery of rare earth elements from low-grade coal fly ash using a recyclable protein biosorbent. Hussain Z; Dwivedi D; Kwon I Front Bioeng Biotechnol; 2024; 12():1385845. PubMed ID: 38817924 [TBL] [Abstract][Full Text] [Related]
12. Optimization of Iron Removal in the Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid. Stoy L; Kulkarni Y; Huang CH Environ Sci Technol; 2022 Apr; 56(8):5150-5160. PubMed ID: 35380811 [TBL] [Abstract][Full Text] [Related]
13. Lanmodulin-Functionalized Magnetic Nanoparticles as a Highly Selective Biosorbent for Recovery of Rare Earth Elements. Ye Q; Jin X; Zhu B; Gao H; Wei N Environ Sci Technol; 2023 Mar; 57(10):4276-4285. PubMed ID: 36790366 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of rare earth elements and toxic heavy metals in coal and coal fly ash. Okeme IC; Crane RA; Nash WM; Ojonimi TI; Scott TB RSC Adv; 2022 Jun; 12(30):19284-19296. PubMed ID: 35865568 [TBL] [Abstract][Full Text] [Related]
15. Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage. Wilfong WC; Ji T; Duan Y; Shi F; Wang Q; Gray ML J Hazard Mater; 2022 Feb; 424(Pt C):127625. PubMed ID: 34857400 [TBL] [Abstract][Full Text] [Related]
16. Recovery of Rare Earth Elements from Low-Grade Feedstock Leachates Using Engineered Bacteria. Park DM; Brewer A; Reed DW; Lammers LN; Jiao Y Environ Sci Technol; 2017 Nov; 51(22):13471-13480. PubMed ID: 28944666 [TBL] [Abstract][Full Text] [Related]
17. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction. Kim D; Powell LE; Delmau LH; Peterson ES; Herchenroeder J; Bhave RR Environ Sci Technol; 2015 Aug; 49(16):9452-9. PubMed ID: 26107531 [TBL] [Abstract][Full Text] [Related]
18. Microbe Encapsulation for Selective Rare-Earth Recovery from Electronic Waste Leachates. Brewer A; Dohnalkova A; Shutthanandan V; Kovarik L; Chang E; Sawvel AM; Mason HE; Reed D; Ye C; Hynes WF; Lammers LN; Park DM; Jiao Y Environ Sci Technol; 2019 Dec; 53(23):13888-13897. PubMed ID: 31702144 [TBL] [Abstract][Full Text] [Related]
19. Solvent extraction separation of copper and zinc from MSWI fly ash leachates. Tang J; Steenari BM Waste Manag; 2015 Oct; 44():147-54. PubMed ID: 26227183 [TBL] [Abstract][Full Text] [Related]
20. Effect of solution chemistry on filtration performances and fouling potential of membrane processes for rare earth element recovery from red mud. Siddiqui AF; Yuksekdag A; Tuncay G; Kose-Mutlu B; Wiesner M; Koyuncu I Environ Sci Pollut Res Int; 2021 Nov; 28(43):61137-61150. PubMed ID: 34173148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]