These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 30907883)
1. Synthesis and Bioconjugation of Thiol-Reactive Reagents for the Creation of Site-Selectively Modified Immunoconjugates. Davydova M; Dewaele Le Roi G; Adumeau P; Zeglis BM J Vis Exp; 2019 Mar; (145):. PubMed ID: 30907883 [TBL] [Abstract][Full Text] [Related]
2. Thiol-Reactive Bifunctional Chelators for the Creation of Site-Selectively Modified Radioimmunoconjugates with Improved Stability. Adumeau P; Davydova M; Zeglis BM Bioconjug Chem; 2018 Apr; 29(4):1364-1372. PubMed ID: 29509393 [TBL] [Abstract][Full Text] [Related]
3. Thiol-Reactive PODS-Bearing Bifunctional Chelators for the Development of EGFR-Targeting [ Da Pieve C; Makarem A; Turnock S; Maczynska J; Smith G; Kramer-Marek G Molecules; 2020 Mar; 25(7):. PubMed ID: 32235296 [TBL] [Abstract][Full Text] [Related]
13. A Kinetically Controlled Bioconjugation Method for the Synthesis of Radioimmunoconjugates and the Development of a Domain Mapping MS-Workflow for Its Characterization. Pometti MA; Di Natale G; Geremia G; Gauswami N; Garufi G; Ricciardi G; Sciortino M; Scopelliti F; Russo G; Ippolito M Bioconjug Chem; 2024 Mar; 35(3):324-332. PubMed ID: 38366964 [TBL] [Abstract][Full Text] [Related]
14. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Shen BQ; Xu K; Liu L; Raab H; Bhakta S; Kenrick M; Parsons-Reponte KL; Tien J; Yu SF; Mai E; Li D; Tibbitts J; Baudys J; Saad OM; Scales SJ; McDonald PJ; Hass PE; Eigenbrot C; Nguyen T; Solis WA; Fuji RN; Flagella KM; Patel D; Spencer SD; Khawli LA; Ebens A; Wong WL; Vandlen R; Kaur S; Sliwkowski MX; Scheller RH; Polakis P; Junutula JR Nat Biotechnol; 2012 Jan; 30(2):184-9. PubMed ID: 22267010 [TBL] [Abstract][Full Text] [Related]
15. DiPODS: A Reagent for Site-Specific Bioconjugation via the Irreversible Rebridging of Disulfide Linkages. Khozeimeh Sarbisheh E; Dewaele-Le Roi G; Shannon WE; Tan S; Xu Y; Zeglis BM; Price EW Bioconjug Chem; 2020 Dec; 31(12):2789-2806. PubMed ID: 33210532 [TBL] [Abstract][Full Text] [Related]
16. Minireview: Addressing the retro-Michael instability of maleimide bioconjugates. Szijj PA; Bahou C; Chudasama V Drug Discov Today Technol; 2018 Dec; 30():27-34. PubMed ID: 30553517 [TBL] [Abstract][Full Text] [Related]
17. Covalent Modification of Biomolecules through Maleimide-Based Labeling Strategies. Renault K; Fredy JW; Renard PY; Sabot C Bioconjug Chem; 2018 Aug; 29(8):2497-2513. PubMed ID: 29954169 [TBL] [Abstract][Full Text] [Related]
18. Improving the stability of thiol-maleimide bioconjugates via the formation of a thiazine structure. Gober IN; Sharan R; Villain M J Pept Sci; 2023 Oct; 29(10):e3495. PubMed ID: 37055943 [TBL] [Abstract][Full Text] [Related]
19. Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides. Christie RJ; Fleming R; Bezabeh B; Woods R; Mao S; Harper J; Joseph A; Wang Q; Xu ZQ; Wu H; Gao C; Dimasi N J Control Release; 2015 Dec; 220(Pt B):660-70. PubMed ID: 26387744 [TBL] [Abstract][Full Text] [Related]
20. Maleimidocysteineamido-DOTA derivatives: new reagents for radiometal chelate conjugation to antibody sulfhydryl groups undergo pH-dependent cleavage reactions. Lewis MR; Shively JE Bioconjug Chem; 1998; 9(1):72-86. PubMed ID: 9460549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]