These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 30908003)

  • 1. Opportunities for Building-Scale Urine Diversion and Challenges for Implementation.
    Boyer TH; Saetta D
    Acc Chem Res; 2019 Apr; 52(4):886-895. PubMed ID: 30908003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management.
    Ishii SK; Boyer TH
    Water Res; 2015 Aug; 79():88-103. PubMed ID: 25973581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of environmental impacts and operational costs of the implementation of an innovative source-separated urine treatment.
    Igos E; Besson M; Navarrete Gutiérrez T; Bisinella de Faria AB; Benetto E; Barna L; Ahmadi A; Spérandio M
    Water Res; 2017 Dec; 126():50-59. PubMed ID: 28918078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The performance and potential of faecal separation and urine diversion to recycle plant nutrients in household wastewater.
    Vinnerås B; Jönsson H
    Bioresour Technol; 2002 Sep; 84(3):275-82. PubMed ID: 12118706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forward osmosis membrane technology for nutrient removal/recovery from wastewater: Recent advances, proposed designs, and future directions.
    Jafarinejad S
    Chemosphere; 2021 Jan; 263():128116. PubMed ID: 33297109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Food waste-wastewater-energy/resource" nexus: Integrating food waste management with wastewater treatment towards urban sustainability.
    Zan F; Iqbal A; Lu X; Wu X; Chen G
    Water Res; 2022 Mar; 211():118089. PubMed ID: 35074573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous phosphorous and nitrogen recovery from source-separated urine: A novel application for fertiliser drawn forward osmosis.
    Volpin F; Chekli L; Phuntsho S; Cho J; Ghaffour N; Vrouwenvelder JS; Kyong Shon H
    Chemosphere; 2018 Jul; 203():482-489. PubMed ID: 29635160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle assessment and costing of urine source separation: Focus on nonsteroidal anti-inflammatory drug removal.
    Landry KA; Boyer TH
    Water Res; 2016 Nov; 105():487-495. PubMed ID: 27668993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Source-separated urine opens golden opportunities for microbial electrochemical technologies.
    Ledezma P; Kuntke P; Buisman CJ; Keller J; Freguia S
    Trends Biotechnol; 2015 Apr; 33(4):214-20. PubMed ID: 25746162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of acetic acid addition on nitrogen speciation and bacterial communities during urine collection and storage.
    Saetta D; Zheng C; Leyva C; Boyer TH
    Sci Total Environ; 2020 Nov; 745():141010. PubMed ID: 32738689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is it better to remove pharmaceuticals in decentralized or conventional wastewater treatment plants? A life cycle assessment comparison.
    Igos E; Benetto E; Venditti S; Kohler C; Cornelissen A; Moeller R; Biwer A
    Sci Total Environ; 2012 Nov; 438():533-40. PubMed ID: 23037813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Source Separation of Urine as an Alternative Solution to Nutrient Management in Biological Nutrient Removal Treatment Plants.
    Jimenez J; Bott C; Love N; Bratby J
    Water Environ Res; 2015 Dec; 87(12):2120-9. PubMed ID: 26652123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative and integrative environmental assessment of advanced wastewater treatment processes based on an average removal of pharmaceuticals.
    Igos E; Benetto E; Venditti S; Köhler C; Cornelissen A
    Water Sci Technol; 2013; 67(2):387-94. PubMed ID: 23168640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of pharmaceuticals in the sealant fluids of actively used waterless urinals.
    Thapa U; Sharma P; Hanigan D
    Water Environ Res; 2021 Oct; 93(10):1837-1845. PubMed ID: 34153156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle assessment as development and decision support tool for wastewater resource recovery technology.
    Fang LL; Valverde-Pérez B; Damgaard A; Plósz BG; Rygaard M
    Water Res; 2016 Jan; 88():538-549. PubMed ID: 26540509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining nutrients (N, K, P) from urban source-separated urine by forward osmosis dewatering.
    Zhang J; She Q; Chang VW; Tang CY; Webster RD
    Environ Sci Technol; 2014 Mar; 48(6):3386-94. PubMed ID: 24564179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mimicking and Inhibiting Urea Hydrolysis in Nonwater Urinals.
    Saetta D; Boyer TH
    Environ Sci Technol; 2017 Dec; 51(23):13850-13858. PubMed ID: 29095605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane distillation crystallization technology for zero liquid discharge and resource recovery: Opportunities, challenges and futuristic perspectives.
    Yadav A; Labhasetwar PK; Shahi VK
    Sci Total Environ; 2022 Feb; 806(Pt 2):150692. PubMed ID: 34600997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarks for urine volume generation and phosphorus mass recovery in commercial and institutional buildings.
    Crane L; Merck A; Delanthamajalu S; Grieger K; Marshall AM; Boyer TH
    Water Res X; 2024 May; 23():100227. PubMed ID: 38765691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technologies for the recovery of nutrients, water and energy from human urine: A review.
    Patel A; Mungray AA; Mungray AK
    Chemosphere; 2020 Nov; 259():127372. PubMed ID: 32599379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.