These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30908009)

  • 1. In Situ Study of Molecular Structure of Water and Ice Entrapped in Graphene Nanovessels.
    Ghodsi SM; Anand S; Shahbazian-Yassar R; Shokuhfar T; Megaridis CM
    ACS Nano; 2019 Apr; 13(4):4677-4685. PubMed ID: 30908009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time TEM observations of ice formation in graphene liquid cell.
    Phakatkar AH; Megaridis CM; Shokuhfar T; Shahbazian-Yassar R
    Nanoscale; 2023 Apr; 15(15):7006-7013. PubMed ID: 36946122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Square ice in graphene nanocapillaries.
    Algara-Siller G; Lehtinen O; Wang FC; Nair RR; Kaiser U; Wu HA; Geim AK; Grigorieva IV
    Nature; 2015 Mar; 519(7544):443-5. PubMed ID: 25810206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational Spectroscopy of Water with High Spatial Resolution.
    Jokisaari JR; Hachtel JA; Hu X; Mukherjee A; Wang C; Konecna A; Lovejoy TC; Dellby N; Aizpurua J; Krivanek OL; Idrobo JC; Klie RF
    Adv Mater; 2018 Jul; ():e1802702. PubMed ID: 30062804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic behavior of nanoscale liquids in graphene liquid cells revealed by in situ transmission electron microscopy.
    Yang J; Alam SB; Yu L; Chan E; Zheng H
    Micron; 2019 Jan; 116():22-29. PubMed ID: 30265880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Situ ESEM and EELS Observation of Water Uptake and Ice Formation in Multilayer Graphene Oxide.
    Daio T; Bayer T; Ikuta T; Nishiyama T; Takahashi K; Takata Y; Sasaki K; Matthew Lyth S
    Sci Rep; 2015 Jul; 5():11807. PubMed ID: 26133654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verification of water presence in graphene liquid cells.
    Keskin S; Pawell C; de Jonge N
    Micron; 2021 Oct; 149():103109. PubMed ID: 34332298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squeezing water clusters between graphene sheets: energetics, structure, and intermolecular interactions.
    McKenzie S; Kang HC
    Phys Chem Chem Phys; 2014 Dec; 16(47):26004-15. PubMed ID: 25356833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanometer Resolution Elemental Mapping in Graphene-Based TEM Liquid Cells.
    Kelly DJ; Zhou M; Clark N; Hamer MJ; Lewis EA; Rakowski AM; Haigh SJ; Gorbachev RV
    Nano Lett; 2018 Feb; 18(2):1168-1174. PubMed ID: 29323499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous Freezing of Low-Dimensional Water Confined in Graphene Nanowrinkles.
    Verhagen T; Klimes J; Pacakova B; Kalbac M; Vejpravova J
    ACS Nano; 2020 Nov; 14(11):15587-15594. PubMed ID: 33119250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyapatite as a scavenger of reactive radiolysis species in graphene liquid cells for
    Jokisaari JR; Hu X; Mukherjee A; Uskoković V; Klie RF
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34407513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network?
    Zhu W; Zhao WH; Wang L; Yin D; Jia M; Yang J; Zeng XC; Yuan LF
    Phys Chem Chem Phys; 2016 Jun; 18(21):14216-21. PubMed ID: 27063210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale Bubble Dynamics Induced by Damage of Graphene Liquid Cells.
    Hirokawa S; Teshima H; Solís-Fernández P; Ago H; Tomo Y; Li QY; Takahashi K
    ACS Omega; 2020 May; 5(19):11180-11185. PubMed ID: 32455241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Chemical and Structural Analysis during
    Serra-Maia R; Kumar P; Meng AC; Foucher AC; Kang Y; Karki K; Jariwala D; Stach EA
    ACS Nano; 2021 Jun; 15(6):10228-10240. PubMed ID: 34003639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and spectroscopy of single nitrogen dopants in graphene at elevated temperatures.
    Warner JH; Lin YC; He K; Koshino M; Suenaga K
    ACS Nano; 2014 Nov; 8(11):11806-15. PubMed ID: 25389658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The purported square ice in bilayer graphene is a nanoscale, monolayer object.
    Pascal TA; Schwartz CP; Lawler KV; Prendergast D
    J Chem Phys; 2019 Jun; 150(23):231101. PubMed ID: 31228922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined Water: Structure, Dynamics, and Thermodynamics.
    Chakraborty S; Kumar H; Dasgupta C; Maiti PK
    Acc Chem Res; 2017 Sep; 50(9):2139-2146. PubMed ID: 28809537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.