These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 30908016)
1. High-Strength and Tough Cellulose Hydrogels Chemically Dual Cross-Linked by Using Low- and High-Molecular-Weight Cross-Linkers. Ye D; Chang C; Zhang L Biomacromolecules; 2019 May; 20(5):1989-1995. PubMed ID: 30908016 [TBL] [Abstract][Full Text] [Related]
2. Dual Physically Cross-Linked κ-Carrageenan-Based Double Network Hydrogels with Superior Self-Healing Performance for Biomedical Application. Deng Y; Huang M; Sun D; Hou Y; Li Y; Dong T; Wang X; Zhang L; Yang W ACS Appl Mater Interfaces; 2018 Oct; 10(43):37544-37554. PubMed ID: 30296052 [TBL] [Abstract][Full Text] [Related]
3. Strong and Tough Cellulose Hydrogels via Solution Annealing and Dual Cross-Linking. Wei P; Yu X; Fang Y; Wang L; Zhang H; Zhu C; Cai J Small; 2023 Jul; 19(28):e2301204. PubMed ID: 36967542 [TBL] [Abstract][Full Text] [Related]
4. Tough all-polysaccharide hydrogels with uniaxially/planarly oriented structure. Xue X; Song G; Chang C Carbohydr Polym; 2022 Jul; 288():119376. PubMed ID: 35450638 [TBL] [Abstract][Full Text] [Related]
5. Injectable Dual Fenton/Enzymatically Cross-Linked Double-Network Hydrogels Based on Acrylic/Phenolic Polymers with Highly Reinforced and Tunable Mechanical Properties. Oh DH; Le Thi P; Park KD ACS Appl Bio Mater; 2024 Aug; 7(8):5702-5718. PubMed ID: 39105701 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking. De France KJ; Chan KJ; Cranston ED; Hoare T Biomacromolecules; 2016 Feb; 17(2):649-60. PubMed ID: 26741744 [TBL] [Abstract][Full Text] [Related]
7. Combination of acid treatment and dual network fabrication to stretchable cellulose based hydrogels with tunable properties. Niu L; Zhang D; Liu Y; Zhou X; Wang J; Wang C; Chu F Int J Biol Macromol; 2020 Mar; 147():1-9. PubMed ID: 31917976 [TBL] [Abstract][Full Text] [Related]
8. Dual Physically Cross-Linked Nanocomposite Hydrogels Reinforced by Tunicate Cellulose Nanocrystals with High Toughness and Good Self-Recoverability. Zhang T; Zuo T; Hu D; Chang C ACS Appl Mater Interfaces; 2017 Jul; 9(28):24230-24237. PubMed ID: 28650140 [TBL] [Abstract][Full Text] [Related]
9. Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Tong R; Chen G; Pan D; Qi H; Li R; Tian J; Lu F; He M Biomacromolecules; 2019 May; 20(5):2096-2104. PubMed ID: 30995834 [TBL] [Abstract][Full Text] [Related]
10. A Dual Cross-Linked Strategy to Construct Moldable Hydrogels with High Stretchability, Good Self-Recovery, and Self-Healing Capability. Qin Y; Wang J; Qiu C; Xu X; Jin Z J Agric Food Chem; 2019 Apr; 67(14):3966-3980. PubMed ID: 30888158 [TBL] [Abstract][Full Text] [Related]
11. Dual-Physical Cross-Linked Tough and Photoluminescent Hydrogels with Good Biocompatibility and Antibacterial Activity. Hu C; Wang MX; Sun L; Yang JH; Zrínyi M; Chen YM Macromol Rapid Commun; 2017 May; 38(10):. PubMed ID: 28295772 [TBL] [Abstract][Full Text] [Related]
12. Bio-based poly (γ-glutamic acid) hydrogels reinforced with bacterial cellulose nanofibers exhibiting superior mechanical properties and cytocompatibility. Dou C; Li Z; Gong J; Li Q; Qiao C; Zhang J Int J Biol Macromol; 2021 Feb; 170():354-365. PubMed ID: 33359810 [TBL] [Abstract][Full Text] [Related]
13. Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels. Huang W; Wang Y; McMullen LM; McDermott MT; Deng H; Du Y; Chen L; Zhang L Carbohydr Polym; 2019 Oct; 222():114977. PubMed ID: 31320104 [TBL] [Abstract][Full Text] [Related]
14. Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors. Liang Y; Ye L; Sun X; Lv Q; Liang H ACS Appl Mater Interfaces; 2020 Jan; 12(1):1577-1587. PubMed ID: 31794185 [TBL] [Abstract][Full Text] [Related]
15. Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Dash R; Foston M; Ragauskas AJ Carbohydr Polym; 2013 Jan; 91(2):638-45. PubMed ID: 23121958 [TBL] [Abstract][Full Text] [Related]
16. Superstrong and Tough Hydrogel through Physical Cross-Linking and Molecular Alignment. Chen W; Li N; Ma Y; Minus ML; Benson K; Lu X; Wang X; Ling X; Zhu H Biomacromolecules; 2019 Dec; 20(12):4476-4484. PubMed ID: 31644270 [TBL] [Abstract][Full Text] [Related]
17. Self-healing and tough hydrogels with physically cross-linked triple networks based on Agar/PVA/Graphene. Samadi N; Sabzi M; Babaahmadi M Int J Biol Macromol; 2018 Feb; 107(Pt B):2291-2297. PubMed ID: 29055701 [TBL] [Abstract][Full Text] [Related]
18. The Formation Mechanism of Hydrogels. Lu L; Yuan S; Wang J; Shen Y; Deng S; Xie L; Yang Q Curr Stem Cell Res Ther; 2018; 13(7):490-496. PubMed ID: 28606044 [TBL] [Abstract][Full Text] [Related]
19. Integrated Functional High-Strength Hydrogels with Metal-Coordination Complexes and H-Bonding Dual Physically Cross-linked Networks. Li X; Li R; Liu Z; Gao X; Long S; Zhang G Macromol Rapid Commun; 2018 Dec; 39(23):e1800400. PubMed ID: 30101504 [TBL] [Abstract][Full Text] [Related]
20. Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds. Guo J; Li Q; Zhang R; Li B; Zhang J; Yao L; Lin Z; Zhang L; Cao X; Duan B Biomacromolecules; 2022 Mar; 23(3):877-888. PubMed ID: 35142493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]