These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30908062)

  • 1. Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon.
    Wang S; Wu F; Zhao S; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2019 Apr; 19(4):2360-2365. PubMed ID: 30908062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Luttinger liquid plasmons in semiconducting single-walled carbon nanotubes.
    Wang S; Zhao S; Shi Z; Wu F; Zhao Z; Jiang L; Watanabe K; Taniguchi T; Zettl A; Zhou C; Wang F
    Nat Mater; 2020 Sep; 19(9):986-991. PubMed ID: 32231241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.
    Chudow JD; Santavicca DF; Prober DE
    Nano Lett; 2016 Aug; 16(8):4909-16. PubMed ID: 27439013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of Electron Tunneling and Plasmon Propagation in a Luttinger Liquid.
    Zhao S; Wang S; Wu F; Shi W; Utama IB; Lyu T; Jiang L; Su Y; Wang S; Watanabe K; Taniguchi T; Zettl A; Zhang X; Zhou C; Wang F
    Phys Rev Lett; 2018 Jul; 121(4):047702. PubMed ID: 30095956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gate-tunable plasmons in mixed-dimensional van der Waals heterostructures.
    Wang S; Yoo S; Zhao S; Zhao W; Kahn S; Cui D; Wu F; Jiang L; Utama MIB; Li H; Li S; Zibrov A; Regan E; Wang D; Zhang Z; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nat Commun; 2021 Aug; 12(1):5039. PubMed ID: 34413291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry-Perot Plasmonic Resonators.
    Wang S; Wu F; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2020 Apr; 20(4):2695-2702. PubMed ID: 32134275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared Light-Emitting Devices from Antenna-Coupled Luttinger Liquid Plasmons In Carbon Nanotubes.
    Yoo S; Zhao S; Wang F
    Phys Rev Lett; 2021 Dec; 127(25):257702. PubMed ID: 35029454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Visualization of Ultrastrong Coupling between Luttinger-Liquid Plasmons and Phonon Polaritons.
    Németh G; Otsuka K; Datz D; Pekker Á; Maruyama S; Borondics F; Kamarás K
    Nano Lett; 2022 Apr; 22(8):3495-3502. PubMed ID: 35315666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Luttinger-liquid plasmons in carbon nanotubes by chemical doping.
    Tian X; Gu Q; Duan J; Chen R; Liu H; Hou Y; Chen J
    Nanoscale; 2018 Apr; 10(14):6288-6293. PubMed ID: 29577139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes.
    Yanagi K; Okada R; Ichinose Y; Yomogida Y; Katsutani F; Gao W; Kono J
    Nat Commun; 2018 Mar; 9(1):1121. PubMed ID: 29549341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes.
    Zhang Y; Zhang Q; Schwingenschlögl U
    Nano Lett; 2017 Nov; 17(11):6747-6751. PubMed ID: 29039674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal nature of collective plasmonic excitations in finite 1D carbon-based nanostructures.
    Polizzi E; Yngvesson SK
    Nanotechnology; 2015 Aug; 26(32):325201. PubMed ID: 26202877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures.
    Ishii H; Kataura H; Shiozawa H; Yoshioka H; Otsubo H; Takayama Y; Miyahara T; Suzuki S; Achiba Y; Nakatake M; Narimura T; Higashiguchi M; Shimada K; Namatame H; Taniguchi M
    Nature; 2003 Dec; 426(6966):540-4. PubMed ID: 14654836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering of plasmons at the intersection of two metallic nanotubes: implications for tunneling.
    Mkhitaryan VV; Fang Y; Gerton JM; Mishchenko EG; Raikh ME
    Phys Rev Lett; 2008 Dec; 101(25):256401. PubMed ID: 19113728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Capacitance Extraction for Carbon Nanotube Interconnects.
    Parkash V; Goel AK
    Nanoscale Res Lett; 2010 Jun; 5(9):1424-1430. PubMed ID: 20730126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Confined Tomonaga-Luttinger Liquid in Mo
    Xia Y; Wang B; Zhang J; Jin Y; Tian H; Ho W; Xu H; Jin C; Xie M
    Nano Lett; 2020 Mar; 20(3):2094-2099. PubMed ID: 32092277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition from a Tomonaga-Luttinger liquid to a fermi liquid in potassium-intercalated bundles of single-wall carbon nanotubes.
    Rauf H; Pichler T; Knupfer M; Fink J; Kataura H
    Phys Rev Lett; 2004 Aug; 93(9):096805. PubMed ID: 15447126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Narrow-gap Luttinger liquid in carbon nanotubes.
    Levitov LS; Tsvelik AM
    Phys Rev Lett; 2003 Jan; 90(1):016401. PubMed ID: 12570634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing spin-charge separation in a Tomonaga-Luttinger liquid.
    Jompol Y; Ford CJ; Griffiths JP; Farrer I; Jones GA; Anderson D; Ritchie DA; Silk TW; Schofield AJ
    Science; 2009 Jul; 325(5940):597-601. PubMed ID: 19644117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge Density Modulation and the Luttinger Liquid State in MoSe
    Xia Y; Zhang J; Jin Y; Ho W; Xu H; Xie M
    ACS Nano; 2020 Aug; 14(8):10716-10722. PubMed ID: 32806039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.