These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30908062)

  • 21. Imaging tunable Luttinger liquid systems in van der Waals heterostructures.
    Li H; Xiang Z; Wang T; Naik MH; Kim W; Nie J; Li S; Ge Z; He Z; Ou Y; Banerjee R; Taniguchi T; Watanabe K; Tongay S; Zettl A; Louie SG; Zaletel MP; Crommie MF; Wang F
    Nature; 2024 Jul; 631(8022):765-770. PubMed ID: 38961296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissipation-driven quantum phase transitions in a Tomonaga-Luttinger liquid electrostatically coupled to a metallic gate.
    Cazalilla MA; Sols F; Guinea F
    Phys Rev Lett; 2006 Aug; 97(7):076401. PubMed ID: 17026252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging gate-tunable Tomonaga-Luttinger liquids in 1H-MoSe
    Zhu T; Ruan W; Wang YQ; Tsai HZ; Wang S; Zhang C; Wang T; Liou F; Watanabe K; Taniguchi T; Neaton JB; Weber-Bargioni A; Zettl A; Qiu ZQ; Zhang G; Wang F; Moore JE; Crommie MF
    Nat Mater; 2022 Jul; 21(7):748-753. PubMed ID: 35710632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-Dimensional Plasmons in Laterally Confined 2D Electron Systems.
    Zagorodnev IV; Zabolotnykh AA; Rodionov DA; Volkov VA
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exciton dynamics in carbon nanotubes: from the Luttinger liquid to harmonic oscillators.
    Sweeney MC; Eaves JD
    Phys Rev Lett; 2014 Mar; 112(10):107402. PubMed ID: 24679327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size, dimensionality, and strong electron correlation in nanoscience.
    Brus L
    Acc Chem Res; 2014 Oct; 47(10):2951-9. PubMed ID: 25120173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unveiling the bosonic nature of an ultrashort few-electron pulse.
    Roussely G; Arrighi E; Georgiou G; Takada S; Schalk M; Urdampilleta M; Ludwig A; Wieck AD; Armagnat P; Kloss T; Waintal X; Meunier T; Bäuerle C
    Nat Commun; 2018 Jul; 9(1):2811. PubMed ID: 30022067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum phase transition in a 1D transport model with boson-affected hopping: Luttinger liquid versus charge-density-wave behavior.
    Ejima S; Hager G; Fehske H
    Phys Rev Lett; 2009 Mar; 102(10):106404. PubMed ID: 19392136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Length-dependent plasmon resonance in single-walled carbon nanotubes.
    Morimoto T; Joung SK; Saito T; Futaba DN; Hata K; Okazaki T
    ACS Nano; 2014 Oct; 8(10):9897-904. PubMed ID: 25283493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmons in Finite Spherical Electrolyte Systems: RPA Effective Jellium Model for Ionic Plasma Excitations.
    Jacak WA
    Plasmonics; 2016; 11():637-651. PubMed ID: 27069439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. White nanolight source for optical nanoimaging.
    Umakoshi T; Tanaka M; Saito Y; Verma P
    Sci Adv; 2020 Jun; 6(23):eaba4179. PubMed ID: 32537508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robust Luttinger Liquid State of 1D Dirac Fermions in a Van der Waals System Nb
    Yao Q; Jung H; Kong K; De C; Kim J; Denlinger JD; Yeom HW
    Nano Lett; 2023 Sep; 23(17):7961-7967. PubMed ID: 37624091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kondo physics in carbon nanotubes.
    Nygård J; Cobden DH; Lindelof PE
    Nature; 2000 Nov; 408(6810):342-6. PubMed ID: 11099037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-energy acoustic plasmons at metal surfaces.
    Diaconescu B; Pohl K; Vattuone L; Savio L; Hofmann P; Silkin VM; Pitarke JM; Chulkov EV; Echenique PM; Farías D; Rocca M
    Nature; 2007 Jul; 448(7149):57-9. PubMed ID: 17611537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-Dimensional Boron Polymorphs for Visible Range Plasmonics: A First-Principles Exploration.
    Huang Y; Shirodkar SN; Yakobson BI
    J Am Chem Soc; 2017 Nov; 139(47):17181-17185. PubMed ID: 29088913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum criticality and the Tomonaga-Luttinger liquid in one-dimensional Bose gases.
    Yang B; Chen YY; Zheng YG; Sun H; Dai HN; Guan XW; Yuan ZS; Pan JW
    Phys Rev Lett; 2017 Oct; 119(16):165701. PubMed ID: 29099230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-dimensional plasmon in an atomic-scale metal wire.
    Nagao T; Yaginuma S; Inaoka T; Sakurai T
    Phys Rev Lett; 2006 Sep; 97(11):116802. PubMed ID: 17025915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Luttinger liquid at the edge of undoped graphene in a strong magnetic field.
    Fertig HA; Brey L
    Phys Rev Lett; 2006 Sep; 97(11):116805. PubMed ID: 17025918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal disruption of a Luttinger liquid.
    Cavazos-Cavazos D; Senaratne R; Kafle A; Hulet RG
    Nat Commun; 2023 May; 14(1):3154. PubMed ID: 37258570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.