These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30908194)

  • 1. Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge.
    Kuijf HJ; Biesbroek JM; De Bresser J; Heinen R; Andermatt S; Bento M; Berseth M; Belyaev M; Cardoso MJ; Casamitjana A; Collins DL; Dadar M; Georgiou A; Ghafoorian M; Jin D; Khademi A; Knight J; Li H; Llado X; Luna M; Mahmood Q; McKinley R; Mehrtash A; Ourselin S; Park BY; Park H; Park SH; Pezold S; Puybareau E; Rittner L; Sudre CH; Valverde S; Vilaplana V; Wiest R; Xu Y; Xu Z; Zeng G; Zhang J; Zheng G; Chen C; van der Flier W; Barkhof F; Viergever MA; Biessels GJ
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2556-2568. PubMed ID: 30908194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.
    Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I
    Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images.
    Li H; Jiang G; Zhang J; Wang R; Wang Z; Zheng WS; Menze B
    Neuroimage; 2018 Dec; 183():650-665. PubMed ID: 30125711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of white matter hyperintensities in T2-FLAIR with AQUA: A comparative validation study against conventional methods.
    Lee S; Rieu Z; Kim RE; Lee M; Yen K; Yong J; Kim D
    Brain Res Bull; 2023 Dec; 205():110825. PubMed ID: 38000477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator.
    Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S
    Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.
    Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A
    Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-to-end volumetric segmentation of white matter hyperintensities using deep learning.
    Farkhani S; Demnitz N; Boraxbekk CJ; Lundell H; Siebner HR; Petersen ET; Madsen KH
    Comput Methods Programs Biomed; 2024 Mar; 245():108008. PubMed ID: 38290291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison and validation of seven white matter hyperintensities segmentation software in elderly patients.
    Vanderbecq Q; Xu E; Ströer S; Couvy-Duchesne B; Diaz Melo M; Dormont D; Colliot O;
    Neuroimage Clin; 2020; 27():102357. PubMed ID: 32739882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging.
    Dadar M; Maranzano J; Misquitta K; Anor CJ; Fonov VS; Tartaglia MC; Carmichael OT; Decarli C; Collins DL;
    Neuroimage; 2017 Aug; 157():233-249. PubMed ID: 28602597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images.
    Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T
    Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities.
    Ling Y; Jouvent E; Cousyn L; Chabriat H; De Guio F
    Neuroinformatics; 2018 Apr; 16(2):269-281. PubMed ID: 29594711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset.
    Heinen R; Steenwijk MD; Barkhof F; Biesbroek JM; van der Flier WM; Kuijf HJ; Prins ND; Vrenken H; Biessels GJ; de Bresser J;
    Sci Rep; 2019 Nov; 9(1):16742. PubMed ID: 31727919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of white matter disease on the accuracy of automated segmentation.
    Karim HT; Andreescu C; MacCloud RL; Butters MA; Reynolds CF; Aizenstein HJ; Tudorascu DL
    Psychiatry Res Neuroimaging; 2016 Jul; 253():7-14. PubMed ID: 27254085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-Scanner and Inter-Scanner Reproducibility of Automatic White Matter Hyperintensities Quantification.
    Guo C; Niu K; Luo Y; Shi L; Wang Z; Zhao M; Wang D; Zhu W; Zhang H; Sun L
    Front Neurosci; 2019; 13():679. PubMed ID: 31354406
    [No Abstract]   [Full Text] [Related]  

  • 16. Performance of three freely available methods for extracting white matter hyperintensities: FreeSurfer, UBO Detector, and BIANCA.
    Hotz I; Deschwanden PF; Liem F; Mérillat S; Malagurski B; Kollias S; Jäncke L
    Hum Brain Mapp; 2022 Apr; 43(5):1481-1500. PubMed ID: 34873789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.
    Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T;
    Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a perivascular space segmentation method in multi-center datasets.
    Huang P; Liu L; Zhang Y; Zhong S; Liu P; Hong H; Wang S; Xie L; Lin M; Jiaerken Y; Luo X; Li K; Zeng Q; Cui L; Li J; Chen Y; Zhang R;
    Neuroimage; 2024 Sep; 298():120803. PubMed ID: 39181194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study.
    Ribaldi F; Altomare D; Jovicich J; Ferrari C; Picco A; Pizzini FB; Soricelli A; Mega A; Ferretti A; Drevelegas A; Bosch B; Müller BW; Marra C; Cavaliere C; Bartrés-Faz D; Nobili F; Alessandrini F; Barkhof F; Gros-Dagnac H; Ranjeva JP; Wiltfang J; Kuijer J; Sein J; Hoffmann KT; Roccatagliata L; Parnetti L; Tsolaki M; Constantinidis M; Aiello M; Salvatore M; Montalti M; Caulo M; Didic M; Bargallo N; Blin O; Rossini PM; Schonknecht P; Floridi P; Payoux P; Visser PJ; Bordet R; Lopes R; Tarducci R; Bombois S; Hensch T; Fiedler U; Richardson JC; Frisoni GB; Marizzoni M
    Magn Reson Imaging; 2021 Feb; 76():108-115. PubMed ID: 33220450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early detection of white matter hyperintensities using SHIVA-WMH detector.
    Tsuchida A; Boutinaud P; Verrecchia V; Tzourio C; Debette S; Joliot M
    Hum Brain Mapp; 2024 Jan; 45(1):e26548. PubMed ID: 38050769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.