BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30908194)

  • 1. Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge.
    Kuijf HJ; Biesbroek JM; De Bresser J; Heinen R; Andermatt S; Bento M; Berseth M; Belyaev M; Cardoso MJ; Casamitjana A; Collins DL; Dadar M; Georgiou A; Ghafoorian M; Jin D; Khademi A; Knight J; Li H; Llado X; Luna M; Mahmood Q; McKinley R; Mehrtash A; Ourselin S; Park BY; Park H; Park SH; Pezold S; Puybareau E; Rittner L; Sudre CH; Valverde S; Vilaplana V; Wiest R; Xu Y; Xu Z; Zeng G; Zhang J; Zheng G; Chen C; van der Flier W; Barkhof F; Viergever MA; Biessels GJ
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2556-2568. PubMed ID: 30908194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.
    Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I
    Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images.
    Li H; Jiang G; Zhang J; Wang R; Wang Z; Zheng WS; Menze B
    Neuroimage; 2018 Dec; 183():650-665. PubMed ID: 30125711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of white matter hyperintensities in T2-FLAIR with AQUA: A comparative validation study against conventional methods.
    Lee S; Rieu Z; Kim RE; Lee M; Yen K; Yong J; Kim D
    Brain Res Bull; 2023 Dec; 205():110825. PubMed ID: 38000477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator.
    Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S
    Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.
    Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A
    Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-to-end volumetric segmentation of white matter hyperintensities using deep learning.
    Farkhani S; Demnitz N; Boraxbekk CJ; Lundell H; Siebner HR; Petersen ET; Madsen KH
    Comput Methods Programs Biomed; 2024 Mar; 245():108008. PubMed ID: 38290291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison and validation of seven white matter hyperintensities segmentation software in elderly patients.
    Vanderbecq Q; Xu E; Ströer S; Couvy-Duchesne B; Diaz Melo M; Dormont D; Colliot O;
    Neuroimage Clin; 2020; 27():102357. PubMed ID: 32739882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging.
    Dadar M; Maranzano J; Misquitta K; Anor CJ; Fonov VS; Tartaglia MC; Carmichael OT; Decarli C; Collins DL;
    Neuroimage; 2017 Aug; 157():233-249. PubMed ID: 28602597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images.
    Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T
    Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities.
    Ling Y; Jouvent E; Cousyn L; Chabriat H; De Guio F
    Neuroinformatics; 2018 Apr; 16(2):269-281. PubMed ID: 29594711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset.
    Heinen R; Steenwijk MD; Barkhof F; Biesbroek JM; van der Flier WM; Kuijf HJ; Prins ND; Vrenken H; Biessels GJ; de Bresser J;
    Sci Rep; 2019 Nov; 9(1):16742. PubMed ID: 31727919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of white matter disease on the accuracy of automated segmentation.
    Karim HT; Andreescu C; MacCloud RL; Butters MA; Reynolds CF; Aizenstein HJ; Tudorascu DL
    Psychiatry Res Neuroimaging; 2016 Jul; 253():7-14. PubMed ID: 27254085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-Scanner and Inter-Scanner Reproducibility of Automatic White Matter Hyperintensities Quantification.
    Guo C; Niu K; Luo Y; Shi L; Wang Z; Zhao M; Wang D; Zhu W; Zhang H; Sun L
    Front Neurosci; 2019; 13():679. PubMed ID: 31354406
    [No Abstract]   [Full Text] [Related]  

  • 16. Performance of three freely available methods for extracting white matter hyperintensities: FreeSurfer, UBO Detector, and BIANCA.
    Hotz I; Deschwanden PF; Liem F; Mérillat S; Malagurski B; Kollias S; Jäncke L
    Hum Brain Mapp; 2022 Apr; 43(5):1481-1500. PubMed ID: 34873789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.
    Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T;
    Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study.
    Ribaldi F; Altomare D; Jovicich J; Ferrari C; Picco A; Pizzini FB; Soricelli A; Mega A; Ferretti A; Drevelegas A; Bosch B; Müller BW; Marra C; Cavaliere C; Bartrés-Faz D; Nobili F; Alessandrini F; Barkhof F; Gros-Dagnac H; Ranjeva JP; Wiltfang J; Kuijer J; Sein J; Hoffmann KT; Roccatagliata L; Parnetti L; Tsolaki M; Constantinidis M; Aiello M; Salvatore M; Montalti M; Caulo M; Didic M; Bargallo N; Blin O; Rossini PM; Schonknecht P; Floridi P; Payoux P; Visser PJ; Bordet R; Lopes R; Tarducci R; Bombois S; Hensch T; Fiedler U; Richardson JC; Frisoni GB; Marizzoni M
    Magn Reson Imaging; 2021 Feb; 76():108-115. PubMed ID: 33220450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early detection of white matter hyperintensities using SHIVA-WMH detector.
    Tsuchida A; Boutinaud P; Verrecchia V; Tzourio C; Debette S; Joliot M
    Hum Brain Mapp; 2024 Jan; 45(1):e26548. PubMed ID: 38050769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SegAE: Unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder.
    Atlason HE; Love A; Sigurdsson S; Gudnason V; Ellingsen LM
    Neuroimage Clin; 2019; 24():102085. PubMed ID: 31835288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.