These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30908236)

  • 1. Single-Cell RNA Sequencing Data Interpretation by Evolutionary Multiobjective Clustering.
    Li X; Wong KC
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1773-1784. PubMed ID: 30908236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolving Transcriptomic Profiles From Single-Cell RNA-Seq Data Using Nature-Inspired Multiobjective Optimization.
    Li X; Zhang S; Wong KC
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2445-2458. PubMed ID: 32031947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep embedded clustering with multiple objectives on scRNA-seq data.
    Li X; Zhang S; Wong KC
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning.
    Wang B; Zhu J; Pierson E; Ramazzotti D; Batzoglou S
    Nat Methods; 2017 Apr; 14(4):414-416. PubMed ID: 28263960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.
    Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell RNA-seq interpretations using evolutionary multiobjective ensemble pruning.
    Li X; Zhang S; Wong KC
    Bioinformatics; 2019 Aug; 35(16):2809-2817. PubMed ID: 30596898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data.
    Zhu X; Li HD; Xu Y; Guo L; Wu FX; Duan G; Wang J
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30700040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Gene Rank Based Approach for Single Cell Similarity Assessment and Clustering.
    Xu Y; Li HD; Pan Y; Luo F; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):431-442. PubMed ID: 31369384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Clustering Ensemble Method for Cell Type Detection by Multiobjective Particle Optimization.
    Liu Q; Zhao X; Wang G
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):1-14. PubMed ID: 34860653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell data clustering based on sparse optimization and low-rank matrix factorization.
    Hu Y; Li B; Chen F; Qu K
    G3 (Bethesda); 2021 Jun; 11(6):. PubMed ID: 33787873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data.
    Mieth B; Hockley JRF; Görnitz N; Vidovic MM; Müller KR; Gutteridge A; Ziemek D
    Sci Rep; 2019 Dec; 9(1):20353. PubMed ID: 31889137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scEWE: high-order element-wise weighted ensemble clustering for heterogeneity analysis of single-cell RNA-sequencing data.
    Huang Y; Jiang H; Ching WK
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Cell Subpopulations and Their Genetic Drivers from Single-Cell RNA-Seq Data Using a Biclustering Approach.
    Shi F; Huang H
    J Comput Biol; 2017 Jul; 24(7):663-674. PubMed ID: 28657835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SAIC: an iterative clustering approach for analysis of single cell RNA-seq data.
    Yang L; Liu J; Lu Q; Riggs AD; Wu X
    BMC Genomics; 2017 Oct; 18(Suppl 6):689. PubMed ID: 28984204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cauchy hyper-graph Laplacian nonnegative matrix factorization for single-cell RNA-sequencing data analysis.
    Wang GF; Shen L
    BMC Bioinformatics; 2024 Apr; 25(1):169. PubMed ID: 38684942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data.
    Wu W; Ma X
    Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fusion Learning Model Based on Deep Learning for Single-Cell RNA Sequencing Data Clustering.
    Qiao TJ; Li F; Yuan SS; Dai LY; Wang J
    J Comput Biol; 2024 Jun; 31(6):576-588. PubMed ID: 38758925
    [No Abstract]   [Full Text] [Related]  

  • 19. Evolutionary Multiobjective Clustering and Its Applications to Patient Stratification.
    Li X; Wong KC
    IEEE Trans Cybern; 2019 May; 49(5):1680-1693. PubMed ID: 29993679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means.
    Hu H; Li Z; Li X; Yu M; Pan X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34472585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.