These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30908850)

  • 1. 3D-Printing of Functionally Graded Porous Materials Using On-Demand Reconfigurable Microfluidics.
    Costantini M; Jaroszewicz J; Kozoń Ł; Szlązak K; Święszkowski W; Garstecki P; Stubenrauch C; Barbetta A; Guzowski J
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7620-7625. PubMed ID: 30908850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Direction in Microfluidics: Printed Porous Materials.
    Evard H; Priks H; Saar I; Aavola H; Tamm T; Leito I
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34201216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing of Hierarchical Silk Fibroin Structures.
    Sommer MR; Schaffner M; Carnelli D; Studart AR
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34677-34685. PubMed ID: 27933765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empowering microfluidics by micro-3D printing and solution-based mineral coating.
    Li H; Raza A; Ge Q; Lu JY; Zhang T
    Soft Matter; 2020 Jul; 16(29):6841-6849. PubMed ID: 32638816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed solution flow type microdroplet cell for simultaneous area selective anodizing.
    Bilal M; Sakairi M
    J Adv Res; 2020 Nov; 26():43-51. PubMed ID: 33133682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid manufacturing techniques for the tissue engineering of human heart valves.
    Lueders C; Jastram B; Hetzer R; Schwandt H
    Eur J Cardiothorac Surg; 2014 Oct; 46(4):593-601. PubMed ID: 25063052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printing porosity: A new approach to creating elevated porosity materials and structures.
    Jakus AE; Geisendorfer NR; Lewis PL; Shah RN
    Acta Biomater; 2018 May; 72():94-109. PubMed ID: 29601901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress in Processing Functionally Graded Polymer Foams.
    Suethao S; Shah DU; Smitthipong W
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32933128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable Porous Polymers via Direct Bubble Writing with Surfactant-Free Inks.
    Amato DN; Amato DV; Sandoz M; Weigand J; Patton DL; Visser CW
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42048-42055. PubMed ID: 32805865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique.
    Wang W; Nie W; Zhou X; Feng W; Chen L; Zhang Q; You Z; Shi Q; Peng C; He C
    Acta Biomater; 2018 Oct; 79():168-181. PubMed ID: 30121374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing.
    Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J
    Biofabrication; 2016 Mar; 8(1):015016. PubMed ID: 26930179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Approach to Resin Formulation for 3D Printed Microfluidics.
    Gong H; Beauchamp M; Perry S; Woolley AT; Nordin GP
    RSC Adv; 2015 Dec; 5(129):106621-106632. PubMed ID: 26744624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.
    Ng WL; Goh MH; Yeong WY; Naing MW
    Biomater Sci; 2018 Feb; 6(3):562-574. PubMed ID: 29383354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D puzzle-inspired construction of large and complex organ structures for tissue engineering.
    Xie ZT; Zeng J; Miyagawa S; Sawa Y; Matsusaki M
    Mater Today Bio; 2023 Aug; 21():100726. PubMed ID: 37545564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic-Controlled Bubble Generation and Fabrication of 3D Polymer Porous Materials.
    Jin S; Wei X; Yu Z; Ren J; Meng Z; Jiang Z
    ACS Appl Mater Interfaces; 2020 May; 12(19):22318-22326. PubMed ID: 32255607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing.
    Yang T; Hu Y; Wang C; Binks BP
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22950-22958. PubMed ID: 28636315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscale Photopatterning of Through-thickness Modulus in a Monolithic and Functionally Graded 3D Printed Part.
    Uzcategui AC; Higgins CI; Hergert JE; Tomaschke AE; Crespo-Cuevas V; Ferguson VL; Bryant SJ; McLeod RR; Killgore JP
    Small Sci; 2021 Mar; 1(3):. PubMed ID: 34458889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.