These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 30908850)
21. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025 [TBL] [Abstract][Full Text] [Related]
22. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. Hsu YH; Turner IG; Miles AW J Mater Sci Mater Med; 2007 Dec; 18(12):2251-6. PubMed ID: 17562138 [TBL] [Abstract][Full Text] [Related]
23. Highly Expandable Foam for Lithographic 3D Printing. Wirth DM; Jaquez A; Gandarilla S; Hochberg JD; Church DC; Pokorski JK ACS Appl Mater Interfaces; 2020 Apr; 12(16):19033-19043. PubMed ID: 32267677 [TBL] [Abstract][Full Text] [Related]
25. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding. Lee KW; Wang S; Lu L; Jabbari E; Currier BL; Yaszemski MJ Tissue Eng; 2006 Oct; 12(10):2801-11. PubMed ID: 17518649 [TBL] [Abstract][Full Text] [Related]
26. Three-Dimensional Printing of pH-Responsive and Functional Polymers on an Affordable Desktop Printer. Nadgorny M; Xiao Z; Chen C; Connal LA ACS Appl Mater Interfaces; 2016 Oct; 8(42):28946-28954. PubMed ID: 27696806 [TBL] [Abstract][Full Text] [Related]
27. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Sultan S; Mathew AP Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572 [TBL] [Abstract][Full Text] [Related]
28. Calcium phosphate scaffolds mimicking the gradient architecture of native long bones. Lindner M; Bergmann C; Telle R; Fischer H J Biomed Mater Res A; 2014 Oct; 102(10):3677-84. PubMed ID: 24307071 [TBL] [Abstract][Full Text] [Related]
29. Facile preparation of bioactive nanoparticle/poly(ε-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions. Hu Y; Wang J; Li X; Hu X; Zhou W; Dong X; Wang C; Yang Z; Binks BP J Colloid Interface Sci; 2019 Jun; 545():104-115. PubMed ID: 30875507 [TBL] [Abstract][Full Text] [Related]
30. Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds. Costantini M; Colosi C; Jaroszewicz J; Tosato A; Święszkowski W; Dentini M; Garstecki P; Barbetta A ACS Appl Mater Interfaces; 2015 Oct; 7(42):23660-71. PubMed ID: 26436204 [TBL] [Abstract][Full Text] [Related]
37. Three-dimensional inkjet biofabrication based on designed images. Arai K; Iwanaga S; Toda H; Genci C; Nishiyama Y; Nakamura M Biofabrication; 2011 Sep; 3(3):034113. PubMed ID: 21900730 [TBL] [Abstract][Full Text] [Related]
38. Low-Cost Passive Sampling Device with Integrated Porous Membrane Produced Using Multimaterial 3D Printing. Kalsoom U; Hasan CK; Tedone L; Desire C; Li F; Breadmore MC; Nesterenko PN; Paull B Anal Chem; 2018 Oct; 90(20):12081-12089. PubMed ID: 30222326 [TBL] [Abstract][Full Text] [Related]
39. Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process. Kim YB; Lee H; Kim GH ACS Appl Mater Interfaces; 2016 Nov; 8(47):32230-32240. PubMed ID: 27933843 [TBL] [Abstract][Full Text] [Related]