These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30908954)

  • 1. Applications of CRISPR Technologies Across the Food Supply Chain.
    Brandt K; Barrangou R
    Annu Rev Food Sci Technol; 2019 Mar; 10():133-150. PubMed ID: 30908954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas engineering in food science and sustainable agriculture: recent advancements and applications.
    Aman Mohammadi M; Maximiano MR; Hosseini SM; Franco OL
    Bioprocess Biosyst Eng; 2023 Apr; 46(4):483-497. PubMed ID: 36707422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Based Crop Improvements: A Way Forward to Achieve Zero Hunger.
    Ahmad S; Tang L; Shahzad R; Mawia AM; Rao GS; Jamil S; Wei C; Sheng Z; Shao G; Wei X; Hu P; Mahfouz MM; Hu S; Tang S
    J Agric Food Chem; 2021 Aug; 69(30):8307-8323. PubMed ID: 34288688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (Broken) Promises of Sustainable Food and Agriculture through New Biotechnologies: The CRISPR Case.
    Kuiken T; Barrangou R; Grieger K
    CRISPR J; 2021 Feb; 4(1):25-31. PubMed ID: 33570455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives.
    Nidhi S; Anand U; Oleksak P; Tripathi P; Lal JA; Thomas G; Kuca K; Tripathi V
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR Genome Editing Technology: A Powerful Tool Applied to Developing Agribusiness.
    Maximiano MR; Távora FTPK; Prado GS; Dias SC; Mehta A; Franco OL
    J Agric Food Chem; 2021 Jun; 69(23):6379-6395. PubMed ID: 34097395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining omics technologies with CRISPR-based genome editing to study food microbes.
    Pan M; Barrangou R
    Curr Opin Biotechnol; 2020 Feb; 61():198-208. PubMed ID: 32035346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing.
    Manghwar H; Lindsey K; Zhang X; Jin S
    Trends Plant Sci; 2019 Dec; 24(12):1102-1125. PubMed ID: 31727474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene editing to facilitate hybrid crop production.
    Chen G; Zhou Y; Kishchenko O; Stepanenko A; Jatayev S; Zhang D; Borisjuk N
    Biotechnol Adv; 2021; 46():107676. PubMed ID: 33285253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The commercialization of genome-editing technologies.
    Brinegar K; K Yetisen A; Choi S; Vallillo E; Ruiz-Esparza GU; Prabhakar AM; Khademhosseini A; Yun SH
    Crit Rev Biotechnol; 2017 Nov; 37(7):924-932. PubMed ID: 28100080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture.
    Chen K; Wang Y; Zhang R; Zhang H; Gao C
    Annu Rev Plant Biol; 2019 Apr; 70():667-697. PubMed ID: 30835493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas in Arabidopsis: overcoming challenges to accelerate improvements in crop photosynthetic efficiencies.
    Khumsupan P; Donovan S; McCormick AJ
    Physiol Plant; 2019 May; 166(1):428-437. PubMed ID: 30706492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Based Technologies and the Future of Food Science.
    Selle K; Barrangou R
    J Food Sci; 2015 Nov; 80(11):R2367-72. PubMed ID: 26444151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Directed Microbiome Manipulation across the Food Supply Chain.
    Barrangou R; Notebaart RA
    Trends Microbiol; 2019 Jun; 27(6):489-496. PubMed ID: 31003873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EU verdict on CRISPR crops dismays scientists.
    Kupferschmidt K
    Science; 2018 Aug; 361(6401):435-436. PubMed ID: 30072518
    [No Abstract]   [Full Text] [Related]  

  • 19. CRISPR-Cas Technologies and Applications in Food Bacteria.
    Stout E; Klaenhammer T; Barrangou R
    Annu Rev Food Sci Technol; 2017 Feb; 8():413-437. PubMed ID: 28245154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-Based Genome Editing in Plants.
    Zhang Y; Ma X; Xie X; Liu YG
    Prog Mol Biol Transl Sci; 2017; 149():133-150. PubMed ID: 28712494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.