These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30909255)

  • 21. An Intelligent Gesture Classification Model for Domestic Wheelchair Navigation with Gesture Variance Compensation.
    Bandara HMRT; Priyanayana KS; Jayasekara AGBP; Chandima DP; Gopura RARC
    Appl Bionics Biomech; 2020; 2020():9160528. PubMed ID: 32399060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autonomous assistance navigation for robotic wheelchairs in confined spaces.
    Cheein FA; Carelli R; De la Cruz C; Muller S; Bastos Filho TF
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():503-6. PubMed ID: 21095654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hand-gesture-based sterile interface for the operating room using contextual cues for the navigation of radiological images.
    Jacob MG; Wachs JP; Packer RA
    J Am Med Inform Assoc; 2013 Jun; 20(e1):e183-6. PubMed ID: 23250787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A User-Developed 3-D Hand Gesture Set for Human-Computer Interaction.
    Pereira A; Wachs JP; Park K; Rempel D
    Hum Factors; 2015 Jun; 57(4):607-21. PubMed ID: 25977321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Kinect-Based Sign Language Hand Gesture Recognition System for Hearing- and Speech-Impaired: A Pilot Study of Pakistani Sign Language.
    Halim Z; Abbas G
    Assist Technol; 2015; 27(1):34-43. PubMed ID: 26132224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The NavChair Assistive Wheelchair Navigation System.
    Levine SP; Bell DA; Jaros LA; Simpson RC; Koren Y; Borenstein J
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):443-51. PubMed ID: 10609632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions.
    Kim K; Kim J; Choi J; Kim J; Lee S
    Sensors (Basel); 2015 Jan; 15(1):1022-46. PubMed ID: 25580901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finger Gesture Spotting from Long Sequences Based on Multi-Stream Recurrent Neural Networks.
    Benitez-Garcia G; Haris M; Tsuda Y; Ukita N
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A head orientated wheelchair for people with disabilities.
    Chen YL; Chen SC; Chen WL; Lin JF
    Disabil Rehabil; 2003 Mar; 25(6):249-53. PubMed ID: 12623613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design considerations for a personalized wheelchair navigation system.
    Ding D; Parmanto B; Karimi HA; Roongpiboonsopit D; Pramana G; Conahan T; Kasemsuppakorn P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4790-3. PubMed ID: 18003077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Web-based interactive drone control using hand gesture.
    Zhao Z; Luo H; Song GH; Chen Z; Lu ZM; Wu X
    Rev Sci Instrum; 2018 Jan; 89(1):014707. PubMed ID: 29390725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modular Gesture Interface for People with Severe Motor Dysfunction: Foot Recognition.
    Yoda I; Ito K; Nakayama T
    Stud Health Technol Inform; 2017; 242():725-732. PubMed ID: 28873877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Next generation autonomous wheelchair control.
    Benson J; Barrett S
    Biomed Sci Instrum; 2005; 41():283-8. PubMed ID: 15850119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prototyping of manual wheelchair with alternative propulsion system.
    Cavallone P; Bonisoli E; Quaglia G
    Disabil Rehabil Assist Technol; 2020 Nov; 15(8):945-951. PubMed ID: 31250677
    [No Abstract]   [Full Text] [Related]  

  • 35. Prediction of user preference over shared-control paradigms for a robotic wheelchair.
    Erdogan A; Argall BD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1106-1111. PubMed ID: 28813969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feasibility of building robust surface electromyography-based hand gesture interfaces.
    Xiang C; Lantz V; Kong-Qiao W; Zhang-Yan Z; Xu Z; Ji-Hai Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2983-6. PubMed ID: 19963552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gesture controlled human-computer interface for the disabled.
    Szczepaniak OM; Sawicki DJ
    Med Pr; 2017 Feb; 68(1):11-21. PubMed ID: 28245000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Establishing user needs for a stability assessment tool to guide wheelchair prescription.
    Moody L; Evans J; Fielden S; Heelis M; Dryer P; Shapcott N; Magee P; Stefanov D
    Disabil Rehabil Assist Technol; 2017 Jan; 12(1):47-55. PubMed ID: 26138221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. WISP, Wearable Inertial Sensor for Online Wheelchair Propulsion Detection.
    Callupe Luna J; Martinez Rocha J; Monacelli E; Foggea G; Hirata Y; Delaplace S
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Eye and Voice-Controlled Human Machine Interface System for Wheelchairs Using Image Gradient Approach.
    Anwer S; Waris A; Sultan H; Butt SI; Zafar MH; Sarwar M; Niazi IK; Shafique M; Pujari AN
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32993047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.