These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30909377)

  • 1. DFT Studies on the Antioxidant Activity of Naringenin and Its Derivatives: Effects of the Substituents at C3.
    Zheng YZ; Deng G; Guo R; Chen DF; Fu ZM
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30909377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substituent Effects on the Radical Scavenging Activity of Isoflavonoid.
    Zheng YZ; Deng G; Guo R; Chen DF; Fu ZM
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Substituent Effect on the Radical Scavenging Activity of Apigenin.
    Zheng YZ; Chen DF; Deng G; Guo R
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30103379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action.
    Klein E; Lukes V
    J Phys Chem A; 2006 Nov; 110(44):12312-20. PubMed ID: 17078630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid.
    Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF
    Phytochemistry; 2019 Apr; 160():19-24. PubMed ID: 30669059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The antioxidative activity of piceatannol and its different derivatives: Antioxidative mechanism analysis.
    Zheng YZ; Chen DF; Deng G; Guo R; Fu ZM
    Phytochemistry; 2018 Dec; 156():184-192. PubMed ID: 30312934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the antioxidant potential of ESIPT-based naringenin flavonoids based on excited state hydrogen bond dynamics: A theoretical study.
    Tang X; Wang L; Zhang Y; Sun C; Huang Z
    J Photochem Photobiol B; 2024 Sep; 258():112996. PubMed ID: 39094239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights.
    Pandithavidana DR; Jayawardana SB
    Molecules; 2019 Apr; 24(9):. PubMed ID: 31027343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fisetin and Robinetin antiradical activity under solvent effect: density functional theory study.
    Menacer R; Rekkab S; Kabouche Z
    J Mol Model; 2022 Aug; 28(8):240. PubMed ID: 35913682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical insight into the antioxidative activity of isoflavonoid: The effect of the C2=C3 double bond.
    Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF
    Phytochemistry; 2019 Oct; 166():112075. PubMed ID: 31351332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical study on the enthalpies of homolytic and heterolytic N-H bond cleavage in substituted melatonins in the gas-phase and aqueous solution.
    Najafi M; Farmanzadeh D; Klein E; Zahedi M
    Acta Chim Slov; 2013; 60(1):43-55. PubMed ID: 23841331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization and antioxidant capacity of naringenin-oxime.
    Türkkan B; Ozyürek M; Bener M; Güçlü K; Apak R
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):235-40. PubMed ID: 22024453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid.
    Shameera Ahamed TK; Rajan VK; Sabira K; Muraleedharan K
    Comput Biol Chem; 2019 Jun; 80():66-78. PubMed ID: 30928870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substituent Effects on the N-H Bond Dissociation Enthalpies, Ionization Energies, Acidities, and Radical Scavenging Behavior of 3,7-Disubstituted Phenoxazines and 3,7-Disubstituted Phenothiazines.
    Thao PTT; Tran BT; Thong NM; Quang DT; Hien NK; Nguyen MT; Nam PC
    ACS Omega; 2020 Oct; 5(42):27572-27581. PubMed ID: 33134721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant properties of selected 4-phenyl hydroxycoumarins: Integrated in vitro and computational studies.
    Veselinović JB; Veselinović AM; Vitnik ŽJ; Vitnik VD; Nikolić GM
    Chem Biol Interact; 2014 May; 214():49-56. PubMed ID: 24602768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the substituent effects on the S-H bond dissociation energy and ionization energy of 3-pyridinethiol: Prediction of novel antioxidant.
    Nam PC; Nguyen MT; Chandra AK
    J Phys Chem A; 2006 Sep; 110(37):10904-11. PubMed ID: 16970388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial transformation of naringenin derivatives.
    Xiao Y; Lee IS
    Arch Pharm Res; 2017 Jun; 40(6):720-726. PubMed ID: 28612118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study on the structure-activity relationships of metabolites of folates as antioxidants and its implications for rational design of antioxidants.
    Ji HF; Tang GY; Zhang HY
    Bioorg Med Chem; 2005 Feb; 13(4):1031-6. PubMed ID: 15670910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of structural C--H compared with phenolic OH sites on the antioxidant activity of oleuropein and its derivatives as a great non-flavonoid family of the olive components: a DFT study.
    Hassanzadeh K; Akhtari K; Hassanzadeh H; Zarei SA; Fakhraei N; Hassanzadeh K
    Food Chem; 2014 Dec; 164():251-8. PubMed ID: 24996331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitro- and amino-group on the antioxidant activity of genistein: A theoretical study.
    Wang L; Yang F; Zhao X; Li Y
    Food Chem; 2019 Mar; 275():339-345. PubMed ID: 30724205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.