These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30909503)

  • 1. Baseball Player Behavior Classification System Using Long Short-Term Memory with Multimodal Features.
    Sun SW; Mou TC; Fang CC; Chang PC; Hua KL; Shih HC
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensor Data Acquisition and Multimodal Sensor Fusion for Human Activity Recognition Using Deep Learning.
    Chung S; Lim J; Noh KJ; Kim G; Jeong H
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry.
    Nait Aicha A; Englebienne G; van Schooten KS; Pijnappels M; Kröse B
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29786659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity Recognition for Ambient Assisted Living with Videos, Inertial Units and Ambient Sensors.
    Ranieri CM; MacLeod S; Dragone M; Vargas PA; Romero RAF
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning for Fall Risk Assessment With Inertial Sensors: Utilizing Domain Knowledge in Spatio-Temporal Gait Parameters.
    Tunca C; Salur G; Ersoy C
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1994-2005. PubMed ID: 31831454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning.
    Uddin MZ; Soylu A
    Sci Rep; 2021 Aug; 11(1):16455. PubMed ID: 34385552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning with long short-term memory networks for classification of dementia related travel patterns.
    Vuong NK; Liu Y; Chan S; Lau CT; Chen Z; Wu M; Li X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5563-5566. PubMed ID: 33019238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning-Based Violin Bowing Action Recognition.
    Sun SW; Liu BY; Chang PC
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing Clothing-Mounted Sensors with Wearable Sensors for Movement Analysis and Activity Classification.
    Jayasinghe U; Harwin WS; Hwang F
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LSTM-Guided Coaching Assistant for Table Tennis Practice.
    Lim SM; Oh HC; Kim J; Lee J; Park J
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion of Video and Inertial Sensing for Deep Learning-Based Human Action Recognition.
    Wei H; Jafari R; Kehtarnavaz N
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking.
    Hu B; Dixon PC; Jacobs JV; Dennerlein JT; Schiffman JM
    J Biomech; 2018 Apr; 71():37-42. PubMed ID: 29452755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors.
    Li F; Shirahama K; Nisar MA; Köping L; Grzegorzek M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29495310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning for Medication Assessment of Individuals with Parkinson's Disease Using Wearable Sensors.
    Hssayeni MD; Adams JL; Ghoraani B
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Hybrid Deep Neural Network to Predict Pre-impact Fall for Older People Based on Wearable Inertial Sensors.
    Yu X; Qiu H; Xiong S
    Front Bioeng Biotechnol; 2020; 8():63. PubMed ID: 32117941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning using Convolutional LSTM estimates Biological Age from Physical Activity.
    Rahman SA; Adjeroh DA
    Sci Rep; 2019 Aug; 9(1):11425. PubMed ID: 31388024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of Chinese Sign Language Recognition Using Wearable Sensors Based on Deep Belief Net.
    Yu Y; Chen X; Cao S; Zhang X; Chen X
    IEEE J Biomed Health Inform; 2020 May; 24(5):1310-1320. PubMed ID: 31536027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy.
    Lebel K; Boissy P; Nguyen H; Duval C
    Biomed Eng Online; 2017 May; 16(1):56. PubMed ID: 28506273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CNN-LSTM neural network for recognition of puffing in smoking episodes using wearable sensors.
    Senyurek VY; Imtiaz MH; Belsare P; Tiffany S; Sazonov E
    Biomed Eng Lett; 2020 May; 10(2):195-203. PubMed ID: 32431952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.