BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30909637)

  • 1. Dual-Structured Flexible Piezoelectric Film Energy Harvesters for Effectively Integrated Performance.
    Han JH; Park KI; Jeong CK
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.
    Hwang GT; Byun M; Jeong CK; Lee KJ
    Adv Healthc Mater; 2015 Apr; 4(5):646-58. PubMed ID: 25476410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester.
    Jeong CK; Baek C; Kingon AI; Park KI; Kim SH
    Small; 2018 May; 14(19):e1704022. PubMed ID: 29655226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.
    Park KI; Son JH; Hwang GT; Jeong CK; Ryu J; Koo M; Choi I; Lee SH; Byun M; Wang ZL; Lee KJ
    Adv Mater; 2014 Apr; 26(16):2514-20. PubMed ID: 24523251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices.
    Pattipaka S; Bae YM; Jeong CK; Park KI; Hwang GT
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Energy Sensing and Harvesting in Micromachined Polymer-Based Piezoelectric Transducers for Fully Implanted Hearing Systems: A Review.
    Latif R; Noor MM; Yunas J; Hamzah AA
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On Mechanical and Electrical Coupling Determination at Piezoelectric Harvester by Customized Algorithm Modeling and Measurable Properties.
    Perez-Alfaro I; Gil-Hernandez D; Murillo N; Bernal C
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretchable piezoelectric nanocomposite generator.
    Park KI; Jeong CK; Kim NK; Lee KJ
    Nano Converg; 2016; 3(1):12. PubMed ID: 28191422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Body Piezoelectric Energy Harvesters through Innovative Designs and Conformable Structures.
    Fernandez SV; Cai F; Chen S; Suh E; Tiepelt J; McIntosh R; Marcus C; Acosta D; Mejorado D; Dagdeviren C
    ACS Biomater Sci Eng; 2023 May; 9(5):2070-2086. PubMed ID: 34735770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Dot Hybridization of Piezoelectric Polymer Films for Non-Transfer Integration of Flexible Biomechanical Energy Harvesters.
    Fu H; Long Z; Lai M; Cao J; Zhou R; Gong J; Chen Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29934-29944. PubMed ID: 35730788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Semitransparent Energy Harvester with High Pressure Sensitivity and Power Density Based on Laterally Aligned PZT Single-Crystal Nanowires.
    Zhao QL; He GP; Di JJ; Song WL; Hou ZL; Tan PP; Wang DW; Cao MS
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24696-24703. PubMed ID: 28715192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Energy Harvester Based on Poly(vinylidene fluoride) Composite Films.
    Yoon S; Shin DJ; Ko YH; Cho KH; Koh JH
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1289-1294. PubMed ID: 30469177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Self-Powered Insole for Human Motion Recognition.
    Han Y; Cao Y; Zhao J; Yin Y; Ye L; Wang X; You Z
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics.
    Fan FR; Tang W; Wang ZL
    Adv Mater; 2016 Jun; 28(22):4283-305. PubMed ID: 26748684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced electro-active phase in a luminescent P(VDF-HFP)/Zn
    Adhikary P; Mandal D
    Phys Chem Chem Phys; 2017 Jul; 19(27):17789-17798. PubMed ID: 28657089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabrication and integration of a sol-gel PZT folded spring energy harvester.
    Lueke J; Badr A; Lou E; Moussa WA
    Sensors (Basel); 2015 May; 15(6):12218-41. PubMed ID: 26016911
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Xie F; Qian X; Li N; Cui D; Zhang H; Xu Z
    Ann Transl Med; 2021 May; 9(9):800. PubMed ID: 34268413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piezoelectric Energy Harvester Technologies: Synthesis, Mechanisms, and Multifunctional Applications.
    He Q; Briscoe J
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29491-29520. PubMed ID: 38739105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.