These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30909637)

  • 21. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator.
    Jiang L; Yang Y; Chen R; Lu G; Li R; Li D; Humayun MS; Shung KK; Zhu J; Chen Y; Zhou Q
    Nano Energy; 2019 Feb; 56():216-224. PubMed ID: 31475091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible PZT-Integrated, Bilateral Sensors via Transfer-Free Laser Lift-Off for Multimodal Measurements.
    Zhu C; Guo D; Ye D; Jiang S; Huang Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37354-37362. PubMed ID: 32814403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrospinning of Highly Bi-Oriented Flexible Piezoelectric Nanofibers for Anisotropic-Responsive Intelligent Sensing.
    Shao Z; Zhang X; Liu J; Liu X; Zhang C
    Small Methods; 2023 Sep; 7(9):e2300701. PubMed ID: 37469015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting.
    Ryu H; Yoon HJ; Kim SW
    Adv Mater; 2019 Aug; 31(34):e1802898. PubMed ID: 30809883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Piezoelectric Output Performance of the SnS
    Cao VA; Kim M; Hu W; Lee S; Youn S; Chang J; Chang HS; Nah J
    ACS Nano; 2021 Jun; 15(6):10428-10436. PubMed ID: 34014067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Powered Viscosity and Pressure Sensing in Microfluidic Systems Based on the Piezoelectric Energy Harvesting of Flowing Droplets.
    Wang Z; Tan L; Pan X; Liu G; He Y; Jin W; Li M; Hu Y; Gu H
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28586-28595. PubMed ID: 28783301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchically Architected Polyvinylidene Fluoride Piezoelectric Foam for Boosted Mechanical Energy Harvesting and Self-Powered Sensor.
    Song L; Huang Z; Guo S; Li Y; Wang Q
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37252-37261. PubMed ID: 34318675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector.
    Sultana A; Sadhukhan P; Alam MM; Das S; Middya TR; Mandal D
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4121-4130. PubMed ID: 29308647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices.
    Zhou H; Zhang Y; Qiu Y; Wu H; Qin W; Liao Y; Yu Q; Cheng H
    Biosens Bioelectron; 2020 Nov; 168():112569. PubMed ID: 32905930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexible and Robust Piezoelectric Polymer Nanocomposites Based Energy Harvesters.
    Singh D; Choudhary A; Garg A
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2793-2800. PubMed ID: 29278484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoampere-Level Piezoelectric Energy Harvesting Performance of Lithography-Free Centimeter-Scale MoS
    Jung YS; Choi HJ; Park SH; Kim D; Park SH; Cho YS
    Small; 2022 Jun; 18(24):e2200184. PubMed ID: 35451217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimentally Verified Analytical Models of Piezoelectric Cantilevers in Different Design Configurations.
    Machu Z; Rubes O; Sevecek O; Hadas Z
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches.
    Xue X; Sun Q; Ma Q; Wang J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transfer-Free PZT Thin Films for Flexible Nanogenerators Derived from a Single-Step Modified Sol-Gel Process on 2D Mica.
    Liu S; Zou D; Yu X; Wang Z; Yang Z
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54991-54999. PubMed ID: 33236878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wearable Piezoelectric Nanogenerators Based on Core-Shell Ga-PZT@GaO
    Zeng S; Zhang M; Jiang L; Wang Z; Gu H; Xiong J; Du Y; Ren L
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7990-8000. PubMed ID: 35107968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrode Effects on Flexible and Robust Polypropylene Ferroelectret Devices for Fully Integrated Energy Harvesters.
    Pastrana J; Dsouza H; Cao Y; Figueroa J; González I; Vilatela JJ; Sepúlveda N
    ACS Appl Mater Interfaces; 2020 May; 12(20):22815-22824. PubMed ID: 32342696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.