These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30909637)

  • 61. Measurement of effective piezoelectric coefficients of PZT thin films for energy harvesting application with interdigitated electrodes.
    Chidambaram N; Mazzalai A; Muralt P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1624-31. PubMed ID: 22899110
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dual Piezoelectric Energy Investing and Harvesting Interface for High-Voltage Input.
    Khan MB; Saif H; Lee K; Lee Y
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800675
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Piezoelectric Particulate Composite for Energy Harvesting from Mechanical Vibration.
    Grzybek D; Kata D; Sikora W; Sapiński B; Micek P; Pamuła H; Huebner J; Rutkowski P
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33147792
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Boosted Mechanical Piezoelectric Energy Harvesting of Polyvinylidene Fluoride/Barium Titanate Composite Porous Foam Based on Three-Dimensional Printing and Foaming Technology.
    Yang C; Chen F; Sun J; Chen N
    ACS Omega; 2021 Nov; 6(45):30769-30778. PubMed ID: 34805705
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fish-Wearable Piezoelectric Nanogenerator for Dual-Modal Energy Scavenging from Fish-Tailing.
    Sheng T; He Q; Cao Y; Dong Z; Gai Y; Zhang W; Zhang D; Chen H; Jiang Y
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39570-39577. PubMed ID: 37561408
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electrospinning of Flexible Poly(vinyl alcohol)/MXene Nanofiber-Based Humidity Sensor Self-Powered by Monolayer Molybdenum Diselenide Piezoelectric Nanogenerator.
    Wang D; Zhang D; Li P; Yang Z; Mi Q; Yu L
    Nanomicro Lett; 2021 Jan; 13(1):57. PubMed ID: 34138242
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Self-Sustainable IoT-Based Remote Sensing Powered by Energy Harvesting Using Stacked Piezoelectric Transducer and Thermoelectric Generator.
    Dipon W; Gamboa B; Estrada M; Flynn WP; Guo R; Bhalla A
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512739
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recent Progress in the Energy Harvesting Technology-From Self-Powered Sensors to Self-Sustained IoT, and New Applications.
    Liu L; Guo X; Liu W; Lee C
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835739
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Piezoelectric Polyacrylonitrile Nanofiber Film-Based Dual-Function Self-Powered Flexible Sensor.
    Zhao G; Zhang X; Cui X; Wang S; Liu Z; Deng L; Qi A; Qiao X; Li L; Pan C; Zhang Y; Li L
    ACS Appl Mater Interfaces; 2018 May; 10(18):15855-15863. PubMed ID: 29663804
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters.
    Lekha CS; Kumar AS; Vivek S; Rasi UP; Saravanan KV; Nandakumar K; Nair SS
    Nanotechnology; 2017 Feb; 28(5):055402. PubMed ID: 28008890
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Experimental Investigation on a Novel Airfoil-Based Piezoelectric Energy Harvester for Aeroelastic Vibration.
    Shan X; Tian H; Cao H; Feng J; Xie T
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32722607
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.
    Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High-Performance Piezoelectric Nanogenerators with Imprinted P(VDF-TrFE)/BaTiO
    Chen X; Li X; Shao J; An N; Tian H; Wang C; Han T; Wang L; Lu B
    Small; 2017 Jun; 13(23):. PubMed ID: 28452402
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Overview of micro/nano-wind energy harvesters and sensors.
    Fu X; Bu T; Li C; Liu G; Zhang C
    Nanoscale; 2020 Dec; 12(47):23929-23944. PubMed ID: 33244556
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic-polymer composites.
    Xie M; Zhang Y; Kraśny MJ; Bowen C; Khanbareh H; Gathercole N
    Energy Environ Sci; 2018 Oct; 11(10):2919-2927. PubMed ID: 30713583
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability.
    Wu H; Huang Y; Xu F; Duan Y; Yin Z
    Adv Mater; 2016 Dec; 28(45):9881-9919. PubMed ID: 27677428
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration.
    Zhang Y; Lu B; Lü C; Feng X
    Proc Math Phys Eng Sci; 2017 Nov; 473(2207):20170615. PubMed ID: 29225508
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications.
    Zhang Y; Xie M; Roscow J; Bao Y; Zhou K; Zhang D; Bowen CR
    J Mater Chem A Mater; 2017 Apr; 5(14):6569-6580. PubMed ID: 28580142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.