BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30909855)

  • 1. Challenges of using lipopolysaccharides for cancer immunotherapy and potential delivery-based solutions thereto.
    Shetab Boushehri MA; Lamprecht A
    Ther Deliv; 2019 Mar; 10(3):165-187. PubMed ID: 30909855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TLR4-Based Immunotherapeutics in Cancer: A Review of the Achievements and Shortcomings.
    Shetab Boushehri MA; Lamprecht A
    Mol Pharm; 2018 Nov; 15(11):4777-4800. PubMed ID: 30226786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of Nanostructure-Based Lipopolysaccharide Active Immunotherapy in Cancer: Size and Composition Determine Short- and Long-Term Tolerability.
    Shetab Boushehri MA; Yazeji T; Stein V; Lamprecht A
    Mol Pharm; 2019 Nov; 16(11):4507-4518. PubMed ID: 31532690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nanoparticle-based approach to improve the outcome of cancer active immunotherapy with lipopolysaccharides.
    Shetab Boushehri MA; Abdel-Mottaleb MMA; Béduneau A; Pellequer Y; Lamprecht A
    Drug Deliv; 2018 Nov; 25(1):1414-1425. PubMed ID: 29902933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics.
    Grimaldi AM; Incoronato M; Salvatore M; Soricelli A
    Nanomedicine (Lond); 2017 Oct; 12(19):2349-2365. PubMed ID: 28868980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering nanoparticle strategies for effective cancer immunotherapy.
    Yoon HY; Selvan ST; Yang Y; Kim MJ; Yi DK; Kwon IC; Kim K
    Biomaterials; 2018 Sep; 178():597-607. PubMed ID: 29576282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticulate immunotherapy for cancer.
    Kapadia CH; Perry JL; Tian S; Luft JC; DeSimone JM
    J Control Release; 2015 Dec; 219():167-180. PubMed ID: 26432555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The in vivo antitumoral effects of lipopolysaccharide against glioblastoma multiforme are mediated in part by Toll-like receptor 4.
    Chicoine MR; Zahner M; Won EK; Kalra RR; Kitamura T; Perry A; Higashikubo R
    Neurosurgery; 2007 Feb; 60(2):372-80; discussion 381. PubMed ID: 17290189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particulate Systems Based on Poly(Lactic-co-Glycolic)Acid (pLGA) for Immunotherapy of Cancer.
    Rahimian S; Fransen MF; Kleinovink JW; Amidi M; Ossendorp F; Hennink WE
    Curr Pharm Des; 2015; 21(29):4201-16. PubMed ID: 26323429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-γ.
    Okuyama H; Tominaga A; Fukuoka S; Taguchi T; Kusumoto Y; Ono S
    Oncol Rep; 2017 Feb; 37(2):684-694. PubMed ID: 28075473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway.
    Zhang S; Yang N; Ni S; Li W; Xu L; Dong P; Lu M
    Int J Clin Exp Pathol; 2014; 7(10):6626-34. PubMed ID: 25400741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in nanomaterials for nucleic acid delivery in cancer immunotherapy.
    Mei Y; Wang R; Jiang W; Bo Y; Zhang T; Yu J; Cheng M; Wu Y; Cheng J; Ma W
    Biomater Sci; 2019 Jun; 7(7):2640-2651. PubMed ID: 31090764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled release of immunotherapeutics for enhanced cancer immunotherapy after local delivery.
    Jin Q; Liu Z; Chen Q
    J Control Release; 2021 Jan; 329():882-893. PubMed ID: 33053396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics.
    Hong E; Dobrovolskaia MA
    Adv Drug Deliv Rev; 2019 Feb; 141():3-22. PubMed ID: 29339144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced nanotechnology: An arsenal to enhance immunotherapy in fighting cancer.
    Cheng CT; Castro G; Liu CH; Lau P
    Clin Chim Acta; 2019 May; 492():12-19. PubMed ID: 30711524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asparagine attenuates hepatic injury caused by lipopolysaccharide in weaned piglets associated with modulation of Toll-like receptor 4 and nucleotide-binding oligomerisation domain protein signalling and their negative regulators.
    Wu H; Liu Y; Pi D; Leng W; Zhu H; Hou Y; Li S; Shi H; Wang X
    Br J Nutr; 2015 Jul; 114(2):189-201. PubMed ID: 26079268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TLR4- and TLR9-dependent effects on cytokines, cell viability, and invasion in human bladder cancer cells.
    Olbert PJ; Kesch C; Henrici M; Subtil FS; Honacker A; Hegele A; Hofmann R; Hänze J
    Urol Oncol; 2015 Mar; 33(3):110.e19-27. PubMed ID: 25499923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Klotho preservation by Rhein promotes toll-like receptor 4 proteolysis and attenuates lipopolysaccharide-induced acute kidney injury.
    Bi F; Chen F; Li Y; Wei A; Cao W
    J Mol Med (Berl); 2018 Sep; 96(9):915-927. PubMed ID: 29730698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Efficacy of Antibody Cancer Immunotherapeutics through Local and Sustained Delivery.
    Huynh V; Jesmer AH; Shoaib MM; D'Angelo AD; Rullo AF; Wylie RG
    Chembiochem; 2019 Mar; 20(6):747-753. PubMed ID: 30426647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Opportunities and Challenges in Cancer Immunotherapy.
    Whiteside TL; Demaria S; Rodriguez-Ruiz ME; Zarour HM; Melero I
    Clin Cancer Res; 2016 Apr; 22(8):1845-55. PubMed ID: 27084738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.