BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30910008)

  • 1. Bichir external gills arise via heterochronic shift that accelerates hyoid arch development.
    Stundl J; Pospisilova A; Jandzik D; Fabian P; Dobiasova B; Minarik M; Metscher BD; Soukup V; Cerny R
    Elife; 2019 Mar; 8():. PubMed ID: 30910008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Holocephalan embryos provide evidence for gill arch appendage reduction and opercular evolution in cartilaginous fishes.
    Gillis JA; Rawlinson KA; Bell J; Lyon WS; Baker CV; Shubin NH
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1507-12. PubMed ID: 21220324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes.
    Stundl J; Pospisilova A; Matějková T; Psenicka M; Bronner ME; Cerny R
    Dev Biol; 2020 Nov; 467(1-2):14-29. PubMed ID: 32835652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bichir microRNA repertoire suggests a ray-finned fish affinity of Polypteriforme.
    Yang L; Zhang Z; He S
    Gene; 2015 Jul; 566(2):242-7. PubMed ID: 25917619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hoxb-5 is expressed in gill arch 5 during pharyngeal arch development of flounder Paralichthys olivaceus embryos.
    Suzuki T; Srivastava AS; Kurokawa T
    Int J Dev Biol; 1999 Jul; 43(4):357-9. PubMed ID: 10470653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embryonic origin and serial homology of gill arches and paired fins in the skate,
    Sleight VA; Gillis JA
    Elife; 2020 Nov; 9():. PubMed ID: 33198887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-oral gut contributes to facial structures in non-teleost fishes.
    Minarik M; Stundl J; Fabian P; Jandzik D; Metscher BD; Psenicka M; Gela D; Osorio-Pérez A; Arias-Rodriguez L; Horácek I; Cerny R
    Nature; 2017 Jul; 547(7662):209-212. PubMed ID: 28678781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Edgeworth's legacy of cranial muscle development with an analysis of muscles in the ventral gill arch region of batoid fishes (Chondrichthyes: Batoidea).
    Miyake T; McEachran JD; Hall BK
    J Morphol; 1992 Jun; 212(3):213-56. PubMed ID: 1507238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental evidence for serial homology of the vertebrate jaw and gill arch skeleton.
    Gillis JA; Modrell MS; Baker CV
    Nat Commun; 2013; 4():1436. PubMed ID: 23385581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in Nkx2.1, Sox2, Bmp4, and Bmp16 expression underlying the lung-to-gas bladder evolutionary transition in ray-finned fishes.
    Funk EC; Breen C; Sanketi BD; Kurpios N; McCune A
    Evol Dev; 2020 Sep; 22(5):384-402. PubMed ID: 33463017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis.
    Baltzinger M; Ori M; Pasqualetti M; Nardi I; Rijli FM
    Dev Dyn; 2005 Dec; 234(4):858-67. PubMed ID: 16222714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reiterative expression of pax1 directs pharyngeal pouch segmentation in medaka.
    Okada K; Inohaya K; Mise T; Kudo A; Takada S; Wada H
    Development; 2016 May; 143(10):1800-10. PubMed ID: 27034424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hoxd-4 expression during pharyngeal arch development in flounder (Paralichthys olivaceus) embryos and effects of retinoic acid on expression.
    Suzuki T; Oohara I; Kurokawa T
    Zoolog Sci; 1998 Feb; 15(1):57-67. PubMed ID: 9615618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharyngeal arch patterning in the absence of neural crest.
    Veitch E; Begbie J; Schilling TF; Smith MM; Graham A
    Curr Biol; 1999 Dec 16-30; 9(24):1481-4. PubMed ID: 10607595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterning the pharyngeal arches.
    Graham A; Smith A
    Bioessays; 2001 Jan; 23(1):54-61. PubMed ID: 11135309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the pharyngeal arch skeleton in Catostomus commersonii (Teleostei: Cypriniformes).
    Engeman JM; Aspinwall N; Mabee PM
    J Morphol; 2009 Mar; 270(3):291-305. PubMed ID: 19034917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the endoderm in the development and evolution of the pharyngeal arches.
    Graham A; Okabe M; Quinlan R
    J Anat; 2005 Nov; 207(5):479-87. PubMed ID: 16313389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved and unique transcriptional features of pharyngeal arches in the skate (Leucoraja erinacea) and evolution of the jaw.
    Hirschberger C; Sleight VA; Criswell KE; Clark SJ; Gillis JA
    Mol Biol Evol; 2021 Sep; 38(10):4187-4204. PubMed ID: 33905525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chondrogenesis and homology of the visceral skeleton in the little skate, Leucoraja erinacea (Chondrichthyes: Batoidea).
    Gillis JA; Dahn RD; Shubin NH
    J Morphol; 2009 May; 270(5):628-43. PubMed ID: 19117064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system.
    Niederreither K; Vermot J; Le Roux I; Schuhbaur B; Chambon P; Dollé P
    Development; 2003 Jun; 130(11):2525-34. PubMed ID: 12702665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.