These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

977 related articles for article (PubMed ID: 30910431)

  • 1. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading.
    Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I
    Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma.
    Yang Y; Yan LF; Zhang X; Nan HY; Hu YC; Han Y; Zhang J; Liu ZC; Sun YZ; Tian Q; Yu Y; Sun Q; Wang SY; Zhang X; Wang W; Cui GB
    J Magn Reson Imaging; 2019 May; 49(5):1263-1274. PubMed ID: 30623514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics strategy for glioma grading using texture features from multiparametric MRI.
    Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB
    J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.
    Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB
    Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.
    Inano R; Oishi N; Kunieda T; Arakawa Y; Yamao Y; Shibata S; Kikuchi T; Fukuyama H; Miyamoto S
    Neuroimage Clin; 2014; 5():396-407. PubMed ID: 25180159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features.
    Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X
    J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glioma grading using a machine-learning framework based on optimized features obtained from T
    Sengupta A; Ramaniharan AK; Gupta RK; Agarwal S; Singh A
    J Magn Reson Imaging; 2019 Oct; 50(4):1295-1306. PubMed ID: 30895704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images.
    Sengupta A; Agarwal S; Gupta PK; Ahlawat S; Patir R; Gupta RK; Singh A
    Eur J Radiol; 2018 Sep; 106():199-208. PubMed ID: 30150045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.
    Sauwen N; Acou M; Van Cauter S; Sima DM; Veraart J; Maes F; Himmelreich U; Achten E; Van Huffel S
    Neuroimage Clin; 2016; 12():753-764. PubMed ID: 27812502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of glioblastoma heterogeneity on survival stratification: a multimodal MR imaging texture analysis.
    Liu Y; Zhang X; Feng N; Yin L; He Y; Xu X; Lu H
    Acta Radiol; 2018 Oct; 59(10):1239-1246. PubMed ID: 29430935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.
    Citak-Er F; Firat Z; Kovanlikaya I; Ture U; Ozturk-Isik E
    Comput Biol Med; 2018 Aug; 99():154-160. PubMed ID: 29933126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach.
    Yuan J; Siakallis L; Li HB; Brandner S; Zhang J; Li C; Mancini L; Bisdas S
    BMC Med Imaging; 2024 May; 24(1):104. PubMed ID: 38702613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging.
    Lin K; Cidan W; Qi Y; Wang X
    Med Phys; 2022 Jul; 49(7):4419-4429. PubMed ID: 35366379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging.
    Zhang X; Xu X; Tian Q; Li B; Wu Y; Yang Z; Liang Z; Liu Y; Cui G; Lu H
    J Magn Reson Imaging; 2017 Nov; 46(5):1281-1288. PubMed ID: 28199039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences.
    Qin JB; Liu Z; Zhang H; Shen C; Wang XC; Tan Y; Wang S; Wu XF; Tian J
    Med Sci Monit; 2017 May; 23():2168-2178. PubMed ID: 28478462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-driven grading of brain gliomas: a multiparametric MR imaging study.
    Caulo M; Panara V; Tortora D; Mattei PA; Briganti C; Pravatà E; Salice S; Cotroneo AR; Tartaro A
    Radiology; 2014 Aug; 272(2):494-503. PubMed ID: 24661247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The diagnostic value of quantitative texture analysis of conventional MRI sequences using artificial neural networks in grading gliomas.
    Alis D; Bagcilar O; Senli YD; Isler C; Yergin M; Kocer N; Islak C; Kizilkilic O
    Clin Radiol; 2020 May; 75(5):351-357. PubMed ID: 31973941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of dynamic contrast-enhanced magnetic resonance imaging and T2-weighted imaging radiomic features by a canonical correlation analysis-based feature fusion method to predict histological grade in ductal breast carcinoma.
    Fan M; Liu Z; Xie S; Xu M; Wang S; Gao X; Li L
    Phys Med Biol; 2019 Oct; 64(21):215001. PubMed ID: 31470420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.