These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 30910690)

  • 61. Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast.
    Su WM; Han GS; Casciano J; Carman GM
    J Biol Chem; 2012 Sep; 287(40):33364-76. PubMed ID: 22865862
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Intracellular processes associated with vesicular transport from endoplasmic reticulum to Golgi and exocytosis: ethanol-induced changes in membrane biogenesis.
    Slomiany A; Grabska M; Piotrowski E; Sengupta S; Morita M; Kasinathan C; Slomiany BL
    Arch Biochem Biophys; 1994 Apr; 310(1):247-55. PubMed ID: 8161212
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Phosphatidate phosphatase activity is induced during lipogenesis in the oleaginous yeast Yarrowia lipolytica.
    Hardman D; Ukey R; Fakas S
    Yeast; 2018 Nov; 35(11):619-625. PubMed ID: 30175530
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets.
    Adeyo O; Horn PJ; Lee S; Binns DD; Chandrahas A; Chapman KD; Goodman JM
    J Cell Biol; 2011 Mar; 192(6):1043-55. PubMed ID: 21422231
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A phosphatidate phosphatase double mutant provides a new insight into plant membrane lipid homeostasis.
    Eastmond PJ; Quettier AL; Kroon JT; Craddock C; Adams N; Slabas AR
    Plant Signal Behav; 2011 Apr; 6(4):526-7. PubMed ID: 21406976
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Diacylglycerol generated in CHO cell plasma membrane by phospholipase C is used for triacylglycerol synthesis.
    Igal RA; Caviglia JM; de Gómez Dumm IN; Coleman RA
    J Lipid Res; 2001 Jan; 42(1):88-95. PubMed ID: 11160369
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Deleting the DAG kinase Dgk1 augments yeast vacuole fusion through increased Ypt7 activity and altered membrane fluidity.
    Miner GE; Starr ML; Hurst LR; Fratti RA
    Traffic; 2017 May; 18(5):315-329. PubMed ID: 28276191
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Differential reliance of CTD-nuclear envelope phosphatase 1 on its regulatory subunit in ER lipid synthesis and storage.
    Carrasquillo Rodríguez JW; Uche O; Gao S; Lee S; Airola MV; Bahmanyar S
    Mol Biol Cell; 2024 Jul; 35(7):ar101. PubMed ID: 38776127
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Novel function of the human presqualene diphosphate phosphatase as a type II phosphatidate phosphatase in phosphatidylcholine and triacylglyceride biosynthesis pathways.
    Theofilopoulos S; Lykidis A; Leondaritis G; Mangoura D
    Biochim Biophys Acta; 2008; 1781(11-12):731-42. PubMed ID: 18930839
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Small phosphatidate phosphatase
    Pillai AN; Shukla S; Gautam S; Rahaman A
    J Biosci; 2017 Dec; 42(4):613-621. PubMed ID: 29229879
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A review of phosphatidate phosphatase assays.
    Dey P; Han GS; Carman GM
    J Lipid Res; 2020 Dec; 61(12):1556-1564. PubMed ID: 32963036
    [TBL] [Abstract][Full Text] [Related]  

  • 72. NLIP and HAD-like Domains of Pah1 and Lipin 1 Phosphatidate Phosphatases Are Essential for Their Catalytic Activities.
    Hsu WH; Huang YH; Chen PR; Hsieh LS
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576941
    [No Abstract]   [Full Text] [Related]  

  • 73. Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase.
    Han GS; O'Hara L; Siniossoglou S; Carman GM
    J Biol Chem; 2008 Jul; 283(29):20443-53. PubMed ID: 18458076
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme.
    Han GS; Wu WI; Carman GM
    J Biol Chem; 2006 Apr; 281(14):9210-8. PubMed ID: 16467296
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phosphatidate phosphatases and diacylglycerol pyrophosphate phosphatases in Saccharomyces cerevisiae and Escherichia coli.
    Carman GM
    Biochim Biophys Acta; 1997 Sep; 1348(1-2):45-55. PubMed ID: 9370315
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A putative
    Shukla S; Pillai AN; Rahaman A
    J Biosci; 2018 Sep; 43(4):693-706. PubMed ID: 30207315
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Roles of phosphatidate phosphatase enzymes in lipid metabolism.
    Carman GM; Han GS
    Trends Biochem Sci; 2006 Dec; 31(12):694-9. PubMed ID: 17079146
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Phosphatase Cascade Nem1/Spo7-Pah1 Regulates Fungal Development, Lipid Homeostasis, and Virulence in Botryosphaeria dothidea.
    Ren W; Zhang Y; Zhu M; Liu Z; Lian S; Wang C; Li B; Liu N
    Microbiol Spectr; 2023 Jun; 11(3):e0388122. PubMed ID: 37191532
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lipin proteins and glycerolipid metabolism: Roles at the ER membrane and beyond.
    Zhang P; Reue K
    Biochim Biophys Acta Biomembr; 2017 Sep; 1859(9 Pt B):1583-1595. PubMed ID: 28411173
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Acute manipulation of diacylglycerol reveals roles in nuclear envelope assembly & endoplasmic reticulum morphology.
    Domart MC; Hobday TM; Peddie CJ; Chung GH; Wang A; Yeh K; Jethwa N; Zhang Q; Wakelam MJ; Woscholski R; Byrne RD; Collinson LM; Poccia DL; Larijani B
    PLoS One; 2012; 7(12):e51150. PubMed ID: 23227247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.