These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30910723)

  • 1. The neural underpinnings of haptically guided functional grasping of tools: An fMRI study.
    Styrkowiec PP; Nowik AM; Króliczak G
    Neuroimage; 2019 Jul; 194():149-162. PubMed ID: 30910723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planning Functional Grasps of Simple Tools Invokes the Hand-independent Praxis Representation Network: An fMRI Study.
    Przybylski Ł; Króliczak G
    J Int Neuropsychol Soc; 2017 Feb; 23(2):108-120. PubMed ID: 28205496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution.
    Marangon M; Kubiak A; Króliczak G
    Front Hum Neurosci; 2015; 9():691. PubMed ID: 26779002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding Brain States for Planning Functional Grasps of Tools: A Functional Magnetic Resonance Imaging Multivoxel Pattern Analysis Study.
    Buchwald M; Przybylski Ł; Króliczak G
    J Int Neuropsychol Soc; 2018 Nov; 24(10):1013-1025. PubMed ID: 30196800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Neural Components of Visually Guided Grasping during Planning and Execution.
    Klein LK; Maiello G; Stubbs K; Proklova D; Chen J; Paulun VC; Culham JC; Fleming RW
    J Neurosci; 2023 Dec; 43(49):8504-8514. PubMed ID: 37848285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action goals and the praxis network: an fMRI study.
    Michalowski B; Buchwald M; Klichowski M; Ras M; Kroliczak G
    Brain Struct Funct; 2022 Sep; 227(7):2261-2284. PubMed ID: 35731447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manual preferences for visually- and haptically-guided grasping.
    Stone KD; Gonzalez CL
    Acta Psychol (Amst); 2015 Sep; 160():1-10. PubMed ID: 26134414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark.
    Monaco S; Gallivan JP; Figley TD; Singhal A; Culham JC
    J Neurosci; 2017 Nov; 37(48):11572-11591. PubMed ID: 29066555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling Representations of Object and Grasp Properties in the Human Brain.
    Fabbri S; Stubbs KM; Cusack R; Culham JC
    J Neurosci; 2016 Jul; 36(29):7648-62. PubMed ID: 27445143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions.
    Cavina-Pratesi C; Connolly JD; Monaco S; Figley TD; Milner AD; Schenk T; Culham JC
    Cortex; 2018 Jan; 98():128-148. PubMed ID: 28668221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hand-Selective Visual Regions Represent How to Grasp 3D Tools: Brain Decoding during Real Actions.
    Knights E; Mansfield C; Tonin D; Saada J; Smith FW; Rossit S
    J Neurosci; 2021 Jun; 41(24):5263-5273. PubMed ID: 33972399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the reaching-grasping network in humans through multivoxel pattern decoding.
    Di Bono MG; Begliomini C; Castiello U; Zorzi M
    Brain Behav; 2015 Nov; 5(11):e00412. PubMed ID: 26664793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representational Neural Mapping of Dexterous Grasping Before Lifting in Humans.
    Marneweck M; Grafton ST
    J Neurosci; 2020 Mar; 40(13):2708-2716. PubMed ID: 32015024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Left anterior supramarginal gyrus activity during tool use action observation after extensive tool use training.
    Bosch TJ; Fercho KA; Hanna R; Scholl JL; Rallis A; Baugh LA
    Exp Brain Res; 2023 Jul; 241(7):1959-1971. PubMed ID: 37365345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool.
    Jacobs S; Danielmeier C; Frey SH
    J Cogn Neurosci; 2010 Nov; 22(11):2594-608. PubMed ID: 19925200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations.
    Freud E; Macdonald SN; Chen J; Quinlan DJ; Goodale MA; Culham JC
    Cortex; 2018 Jan; 98():34-48. PubMed ID: 28431740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gesturing tool use and tool transport actions modulates inferior parietal functional connectivity with the dorsal and ventral object processing pathways.
    Garcea FE; Buxbaum LJ
    Hum Brain Mapp; 2019 Jul; 40(10):2867-2883. PubMed ID: 30900321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional magnetic resonance imaging adaptation reveals the cortical networks for processing grasp-relevant object properties.
    Monaco S; Chen Y; Medendorp WP; Crawford JD; Fiehler K; Henriques DY
    Cereb Cortex; 2014 Jun; 24(6):1540-54. PubMed ID: 23362111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grasping with a Twist: Dissociating Action Goals from Motor Actions in Human Frontoparietal Circuits.
    Rens G; Figley TD; Gallivan JP; Liu Y; Culham JC
    J Neurosci; 2023 Aug; 43(32):5831-5847. PubMed ID: 37474309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Context and hand posture modulate the neural dynamics of tool-object perception.
    Natraj N; Poole V; Mizelle JC; Flumini A; Borghi AM; Wheaton LA
    Neuropsychologia; 2013 Feb; 51(3):506-19. PubMed ID: 23261936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.