These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30910723)

  • 21. Neural representations of haptic object size in the human brain revealed by multivoxel fMRI patterns.
    Perini F; Powell T; Watt SJ; Downing PE
    J Neurophysiol; 2020 Jul; 124(1):218-231. PubMed ID: 32519597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Haptic working memory for grasping: the role of the parietal operculum.
    Maule F; Barchiesi G; Brochier T; Cattaneo L
    Cereb Cortex; 2015 Feb; 25(2):528-37. PubMed ID: 24046082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parietal area BA7 integrates motor programs for reaching, grasping, and bimanual coordination.
    Le A; Vesia M; Yan X; Crawford JD; Niemeier M
    J Neurophysiol; 2017 Feb; 117(2):624-636. PubMed ID: 27832593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Priming tool actions: Are real objects more effective primes than pictures?
    Squires SD; Macdonald SN; Culham JC; Snow JC
    Exp Brain Res; 2016 Apr; 234(4):963-76. PubMed ID: 26686378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Action affordances and visuo-spatial complexity in motor imagery: An fMRI study.
    Schulz L; Ischebeck A; Wriessnegger SC; Steyrl D; Müller-Putz GR
    Brain Cogn; 2018 Jul; 124():37-46. PubMed ID: 29723681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Working memory maintenance of grasp-target information in the human posterior parietal cortex.
    Fiehler K; Bannert MM; Bischoff M; Blecker C; Stark R; Vaitl D; Franz VH; Rösler F
    Neuroimage; 2011 Feb; 54(3):2401-11. PubMed ID: 20932912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expert Tool Users Show Increased Differentiation between Visual Representations of Hands and Tools.
    Schone HR; Maimon-Mor RO; Baker CI; Makin TR
    J Neurosci; 2021 Mar; 41(13):2980-2989. PubMed ID: 33563728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decoding Grasping Movements from the Parieto-Frontal Reaching Circuit in the Nonhuman Primate.
    Nelissen K; Fiave PA; Vanduffel W
    Cereb Cortex; 2018 Apr; 28(4):1245-1259. PubMed ID: 28334082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions.
    Vesia M; Barnett-Cowan M; Elahi B; Jegatheeswaran G; Isayama R; Neva JL; Davare M; Staines WR; Culham JC; Chen R
    Cortex; 2017 Jul; 92():175-186. PubMed ID: 28499145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting others' actions via grasp and gaze: evidence for distinct brain networks.
    Ramsey R; Cross ES; Hamilton AF
    Psychol Res; 2012 Jul; 76(4):494-502. PubMed ID: 22120203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TMS over the supramarginal gyrus delays selection of appropriate grasp orientation during reaching and grasping tools for use.
    McDowell T; Holmes NP; Sunderland A; Schürmann M
    Cortex; 2018 Jun; 103():117-129. PubMed ID: 29609118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. What does the brain do when you fake it? An FMRI study of pantomimed and real grasping.
    Króliczak G; Cavina-Pratesi C; Goodman DA; Culham JC
    J Neurophysiol; 2007 Mar; 97(3):2410-22. PubMed ID: 17229828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gaze strategies during visually-guided versus memory-guided grasping.
    Prime SL; Marotta JJ
    Exp Brain Res; 2013 Mar; 225(2):291-305. PubMed ID: 23239197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human EEG reveals distinct neural correlates of power and precision grasping types.
    Iturrate I; Chavarriaga R; Pereira M; Zhang H; Corbet T; Leeb R; Millán JDR
    Neuroimage; 2018 Nov; 181():635-644. PubMed ID: 30056196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human fMRI reveals that delayed action re-recruits visual perception.
    Singhal A; Monaco S; Kaufman LD; Culham JC
    PLoS One; 2013; 8(9):e73629. PubMed ID: 24040007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Grasping with the Press of a Button: Grasp-selective Responses in the Human Anterior Intraparietal Sulcus Depend on Nonarbitrary Causal Relationships between Hand Movements and End-effector Actions.
    Frey SH; Hansen M; Marchal N
    J Cogn Neurosci; 2015 Jun; 27(6):1146-60. PubMed ID: 25436672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Grasping movements toward seen and handheld objects.
    Camponogara I; Volcic R
    Sci Rep; 2019 Mar; 9(1):3665. PubMed ID: 30842478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp?
    Valyear KF; Cavina-Pratesi C; Stiglick AJ; Culham JC
    Neuroimage; 2007; 36 Suppl 2():T94-T108. PubMed ID: 17499175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The spatial relations between stimulus and response determine an absolute visuo-haptic calibration in pantomime-grasping.
    Davarpanah Jazi S; Heath M
    Brain Cogn; 2017 Jun; 114():29-39. PubMed ID: 28346879
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Grasping without sight: insights from the congenitally blind.
    Stone KD; Gonzalez CL
    PLoS One; 2014; 9(10):e110175. PubMed ID: 25303211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.