These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3091080)

  • 1. Association of ferrochelatase with Complex I in bovine heart mitochondria.
    Taketani S; Tanaka-Yoshioka A; Masaki R; Tashiro Y; Tokunaga R
    Biochim Biophys Acta; 1986 Sep; 883(2):277-83. PubMed ID: 3091080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the utilization of ferritin iron in the ferrochelatase reaction of isolated rat liver mitochondria.
    Ulvik R; Romslo I
    Biochim Biophys Acta; 1978 Jun; 541(2):251-62. PubMed ID: 208637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of heme-synthesizing activity from ferric ion and porphyrins, and the effect of lead on the activity.
    Taketani S; Tanaka A; Tokunaga R
    Arch Biochem Biophys; 1985 Oct; 242(1):291-6. PubMed ID: 3931555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hysteretic interaction of NADH and Mg2+ with mammalian NADH:CoQ reductase from beef heart.
    Tushurashvili PR; Dekanosidze NZ; Inasaridze NP; Kekelidze TN; Tsartsidze MA; Lomsadze BA
    FEBS Lett; 1989 Feb; 244(2):268-70. PubMed ID: 2493393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate].
    Kotliar AB
    Biokhimiia; 1990 Feb; 55(2):195-200. PubMed ID: 2111181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Reaction of complex I of the mitochondrial electron transport chain with artificial oxidizers].
    Chenas NK
    Ukr Biokhim Zh (1978); 1989; 61(5):23-9. PubMed ID: 2511653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of rotenone-insensitive reduction of quinones by mitochondrial NADH:ubiquinone reductase. The high affinity binding of NAD+ and NADH to the reduced enzyme form.
    Cénas NK; Bironaité DA; Kulys JJ
    FEBS Lett; 1991 Jun; 284(2):192-4. PubMed ID: 1905649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of superoxide formation by respiratory chain NADH- dehydrogenase of bovine heart mitochondria.
    Kang D; Narabayashi H; Sata T; Takeshige K
    J Biochem; 1983 Oct; 94(4):1301-6. PubMed ID: 6317663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation of ferrochelatase in bovine liver mitochondria.
    Harbin BM; Dailey HA
    Biochemistry; 1985 Jan; 24(2):366-70. PubMed ID: 3884041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired function of mitochondrial electron transfer complex I in canine myocardial ischemia: loss of flavin mononucleotide.
    Rouslin W; Ranganathan S
    J Mol Cell Cardiol; 1983 Aug; 15(8):537-42. PubMed ID: 6231381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of NADH:Q oxidoreductase from bovine heart mitochondria studied by electron microscopy.
    Boekema EJ; Van Breemen JF; Keegstra W; Van Bruggen EF; Albracht SP
    Biochim Biophys Acta; 1982 Jan; 679(1):7-11. PubMed ID: 6798997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitroreductase activity of NADH dehydrogenase of the respiratory redox chain.
    Smyth GE; Orsi BA
    Biochem J; 1989 Feb; 257(3):859-63. PubMed ID: 2494990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EPR spectral stimulation on cluster N-1b in NADH-ubiquinone oxidoreductase of bovine heart mitochondria.
    Hearshen DO; Dunham WR; Albracht SP; Ohnishi T; Beinert H
    FEBS Lett; 1981 Oct; 133(2):287-90. PubMed ID: 6273227
    [No Abstract]   [Full Text] [Related]  

  • 14. Substrate channeling of NADH and binding of dehydrogenases to complex I.
    Fukushima T; Decker RV; Anderson WM; Spivey HO
    J Biol Chem; 1989 Oct; 264(28):16483-8. PubMed ID: 2506178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of FMN-dependent NADH-quinone reductase induced by menadione in Escherichia coli.
    Hayashi M; Hasegawa K; Oguni Y; Unemoto T
    Biochim Biophys Acta; 1990 Aug; 1035(2):230-6. PubMed ID: 2118386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid peroxidation and the reduction of ADP-Fe3+ chelate by NADH-ubiquinone reductase preparation from bovine heart mitochondria.
    Takeshige K; Takayanagi R; Minakami S
    Biochem J; 1980 Dec; 192(3):861-6. PubMed ID: 6786284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Import of cytochrome c into mitochondria: reduction of heme, mediated by NADH and flavin nucleotides, is obligatory for its covalent linkage to apocytochrome c.
    Nicholson DW; Neupert W
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4340-4. PubMed ID: 2543970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DCCD sensitivity of electron and proton transfer by NADH: ubiquinone oxidoreductase in bovine heart submitochondrial particles--a thermodynamic approach.
    Vuokila PT; Hassinen IE
    Biochim Biophys Acta; 1989 May; 974(2):219-22. PubMed ID: 2540836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spin label study of the lipid boundary layer of mitochondrial NADH-ubiquinone oxidoreductase.
    Poore VM; Ragan CI
    Biochim Biophys Acta; 1982 Dec; 693(1):105-12. PubMed ID: 6295475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.