These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30910961)

  • 1. Enzyme annotation for orphan and novel reactions using knowledge of substrate reactive sites.
    Hadadi N; MohammadiPeyhani H; Miskovic L; Seijo M; Hatzimanikatis V
    Proc Natl Acad Sci U S A; 2019 Apr; 116(15):7298-7307. PubMed ID: 30910961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid identification of sequences for orphan enzymes to power accurate protein annotation.
    Ramkissoon KR; Miller JK; Ojha S; Watson DS; Bomar MG; Galande AK; Shearer AG
    PLoS One; 2013; 8(12):e84508. PubMed ID: 24386392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of homology based and non-homology based computational methods for the identification and annotation of orphan enzymes: using Mycobacterium tuberculosis H37Rv as a case study.
    Sinha S; Lynn AM; Desai DK
    BMC Bioinformatics; 2020 Oct; 21(1):466. PubMed ID: 33076816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes.
    Smith AA; Belda E; Viari A; Medigue C; Vallenet D
    PLoS Comput Biol; 2012 May; 8(5):e1002540. PubMed ID: 22693442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ORENZA: a web resource for studying ORphan ENZyme activities.
    Lespinet O; Labedan B
    BMC Bioinformatics; 2006 Oct; 7():436. PubMed ID: 17026747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATLAS of Biochemistry: A Repository of All Possible Biochemical Reactions for Synthetic Biology and Metabolic Engineering Studies.
    Hadadi N; Hafner J; Shajkofci A; Zisaki A; Hatzimanikatis V
    ACS Synth Biol; 2016 Oct; 5(10):1155-1166. PubMed ID: 27404214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.
    Almonacid DE; Yera ER; Mitchell JB; Babbitt PC
    PLoS Comput Biol; 2010 Mar; 6(3):e1000700. PubMed ID: 20300652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Enzyme Genes Using Chemical Structure Alignments of Substrate-Product Pairs.
    Moriya Y; Yamada T; Okuda S; Nakagawa Z; Kotera M; Tokimatsu T; Kanehisa M; Goto S
    J Chem Inf Model; 2016 Mar; 56(3):510-6. PubMed ID: 26822930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling the orphan enzymes.
    Sorokina M; Stam M; Médigue C; Lespinet O; Vallenet D
    Biol Direct; 2014 Jun; 9():10. PubMed ID: 24906382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases.
    Green ML; Karp PD
    BMC Bioinformatics; 2004 Jun; 5():76. PubMed ID: 15189570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DomSign: a top-down annotation pipeline to enlarge enzyme space in the protein universe.
    Wang T; Mori H; Zhang C; Kurokawa K; Xing XH; Yamada T
    BMC Bioinformatics; 2015 Mar; 16():96. PubMed ID: 25888481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Updated ATLAS of Biochemistry with New Metabolites and Improved Enzyme Prediction Power.
    Hafner J; MohammadiPeyhani H; Sveshnikova A; Scheidegger A; Hatzimanikatis V
    ACS Synth Biol; 2020 Jun; 9(6):1479-1482. PubMed ID: 32421310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An assessment of catalytic residue 3D ensembles for the prediction of enzyme function.
    Žváček C; Friedrichs G; Heizinger L; Merkl R
    BMC Bioinformatics; 2015 Nov; 16():359. PubMed ID: 26538500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orphan enzymes could be an unexplored reservoir of new drug targets.
    Lespinet O; Labedan B
    Drug Discov Today; 2006 Apr; 11(7-8):300-5. PubMed ID: 16580971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and genomic evolution of enzyme-catalyzed reaction networks.
    Kanehisa M
    FEBS Lett; 2013 Sep; 587(17):2731-7. PubMed ID: 23816707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of subfamily-specific sites based on active sites modeling and clustering.
    de Melo-Minardi RC; Bastard K; Artiguenave F
    Bioinformatics; 2010 Dec; 26(24):3075-82. PubMed ID: 20980272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High precision multi-genome scale reannotation of enzyme function by EFICAz.
    Arakaki AK; Tian W; Skolnick J
    BMC Genomics; 2006 Dec; 7():315. PubMed ID: 17166279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BKM-react, an integrated biochemical reaction database.
    Lang M; Stelzer M; Schomburg D
    BMC Biochem; 2011 Aug; 12():42. PubMed ID: 21824409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours.
    Yamada T; Waller AS; Raes J; Zelezniak A; Perchat N; Perret A; Salanoubat M; Patil KR; Weissenbach J; Bork P
    Mol Syst Biol; 2012 May; 8():581. PubMed ID: 22569339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergence and convergence in enzyme evolution.
    Galperin MY; Koonin EV
    J Biol Chem; 2012 Jan; 287(1):21-28. PubMed ID: 22069324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.