BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30911188)

  • 1. Structure of the 80S ribosome-Xrn1 nuclease complex.
    Tesina P; Heckel E; Cheng J; Fromont-Racine M; Buschauer R; Kater L; Beatrix B; Berninghausen O; Jacquier A; Becker T; Beckmann R
    Nat Struct Mol Biol; 2019 Apr; 26(4):275-280. PubMed ID: 30911188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No-Go Decay mRNA cleavage in the ribosome exit tunnel produces 5'-OH ends phosphorylated by Trl1.
    Navickas A; Chamois S; Saint-Fort R; Henri J; Torchet C; Benard L
    Nat Commun; 2020 Jan; 11(1):122. PubMed ID: 31913314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical Characterization of Yeast Xrn1.
    Langeberg CJ; Welch WRW; McGuire JV; Ashby A; Jackson AD; Chapman EG
    Biochemistry; 2020 Apr; 59(15):1493-1507. PubMed ID: 32251580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mRNA decay is regulated via sequestration of the conserved 5'-3' exoribonuclease Xrn1 at eisosome in yeast.
    Vaškovičová K; Awadová T; Veselá P; Balážová M; Opekarová M; Malinsky J
    Eur J Cell Biol; 2017 Sep; 96(6):591-599. PubMed ID: 28501103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins.
    Blasco-Moreno B; de Campos-Mata L; Böttcher R; García-Martínez J; Jungfleisch J; Nedialkova DD; Chattopadhyay S; Gas ME; Oliva B; Pérez-Ortín JE; Leidel SA; Choder M; Díez J
    Nat Commun; 2019 Mar; 10(1):1298. PubMed ID: 30899024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast exoribonuclease Xrn1 and associated factors modulate RNA polymerase II processivity in 5' and 3' gene regions.
    Fischer J; Song YS; Yosef N; di Iulio J; Churchman LS; Choder M
    J Biol Chem; 2020 Aug; 295(33):11435-11454. PubMed ID: 32518159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pervasive translation of Xrn1-sensitive unstable long noncoding RNAs in yeast.
    Andjus S; Szachnowski U; Vogt N; Gioftsidi S; Hatin I; Cornu D; Papadopoulos C; Lopes A; Namy O; Wery M; Morillon A
    RNA; 2024 May; 30(6):662-679. PubMed ID: 38443115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay.
    D'Orazio KN; Wu CC; Sinha N; Loll-Krippleber R; Brown GW; Green R
    Elife; 2019 Jun; 8():. PubMed ID: 31219035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into ribosomal rescue by Dom34 and Hbs1 at near-atomic resolution.
    Hilal T; Yamamoto H; Loerke J; Bürger J; Mielke T; Spahn CM
    Nat Commun; 2016 Dec; 7():13521. PubMed ID: 27995908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 5' → 3' exoribonuclease XRN1/Pacman and its functions in cellular processes and development.
    Jones CI; Zabolotskaya MV; Newbury SF
    Wiley Interdiscip Rev RNA; 2012; 3(4):455-68. PubMed ID: 22383165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of 5'-3' exoribonuclease Xrn1 by cofactor Dcs1 is essential for mitochondrial function in yeast.
    Sinturel F; Bréchemier-Baey D; Kiledjian M; Condon C; Bénard L
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8264-9. PubMed ID: 22570495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels.
    Sun M; Schwalb B; Pirkl N; Maier KC; Schenk A; Failmezger H; Tresch A; Cramer P
    Mol Cell; 2013 Oct; 52(1):52-62. PubMed ID: 24119399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking.
    García-Martínez J; Pérez-Martínez ME; Pérez-Ortín JE; Alepuz P
    RNA Biol; 2021 Oct; 18(10):1458-1474. PubMed ID: 33258404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosome origami.
    Rorbach J; Aibara S; Amunts A
    Nat Struct Mol Biol; 2017 Nov; 24(11):879-881. PubMed ID: 29112687
    [No Abstract]   [Full Text] [Related]  

  • 15. The exoribonuclease Xrn1 is a post-transcriptional negative regulator of autophagy.
    Delorme-Axford E; Abernathy E; Lennemann NJ; Bernard A; Ariosa A; Coyne CB; Kirkegaard K; Klionsky DJ
    Autophagy; 2018; 14(5):898-912. PubMed ID: 29465287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome.
    Becker T; Armache JP; Jarasch A; Anger AM; Villa E; Sieber H; Motaal BA; Mielke T; Berninghausen O; Beckmann R
    Nat Struct Mol Biol; 2011 Jun; 18(6):715-20. PubMed ID: 21623367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cryo-EM structure of a ribosome-Ski2-Ski3-Ski8 helicase complex.
    Schmidt C; Kowalinski E; Shanmuganathan V; Defenouillère Q; Braunger K; Heuer A; Pech M; Namane A; Berninghausen O; Fromont-Racine M; Jacquier A; Conti E; Becker T; Beckmann R
    Science; 2016 Dec; 354(6318):1431-1433. PubMed ID: 27980209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of exoribonuclease-mediated mRNA transcription termination.
    Zeng Y; Zhang HW; Wu XX; Zhang Y
    Nature; 2024 Apr; 628(8009):887-893. PubMed ID: 38538796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xrn1 is a deNADding enzyme modulating mitochondrial NAD-capped RNA.
    Sharma S; Yang J; Grudzien-Nogalska E; Shivas J; Kwan KY; Kiledjian M
    Nat Commun; 2022 Feb; 13(1):889. PubMed ID: 35173156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling.
    Braun KA; Vaga S; Dombek KM; Fang F; Palmisano S; Aebersold R; Young ET
    Sci Signal; 2014 Jul; 7(333):ra64. PubMed ID: 25005228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.