These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30911323)

  • 1. Utilization of computer vision and multispectral imaging techniques for classification of cowpea (
    ElMasry G; Mandour N; Wagner MH; Demilly D; Verdier J; Belin E; Rousseau D
    Plant Methods; 2019; 15():24. PubMed ID: 30911323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Destructive Identification of Naturally Aged Alfalfa Seeds via Multispectral Imaging Analysis.
    Wang X; Zhang H; Song R; He X; Mao P; Jia S
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Destructive Testing of Alfalfa Seed Vigor Based on Multispectral Imaging Technology.
    Zhang S; Zeng H; Ji W; Yi K; Yang S; Mao P; Wang Z; Yu H; Li M
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Measurement of Soybean Seed Viability Using Kernel-Based Multispectral Image Analysis.
    Baek I; Kusumaningrum D; Kandpal LM; Lohumi S; Mo C; Kim MS; Cho BK
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30641923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Applications of Multispectral Imaging in Seed Phenotyping and Quality Monitoring-An Overview.
    ElMasry G; Mandour N; Al-Rejaie S; Belin E; Rousseau D
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30836613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viability prediction of Ricinus cummunis L. seeds using multispectral imaging.
    Olesen MH; Nikneshan P; Shrestha S; Tadayyon A; Deleuran LC; Boelt B; Gislum R
    Sensors (Basel); 2015 Feb; 15(2):4592-604. PubMed ID: 25690554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of essential oils on the quality of Vigna unguiculata L. (Walp.) seeds compared by traditional method, image and multivariate analysis.
    Silva AVD; Silva CMD; Azevedo MC; Silva JHBD; Nóbrega JS; Fátima RT; Ferreira JTA; Pereira WE; Mielezrski F
    Braz J Biol; 2023; 83():e272616. PubMed ID: 37255203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of
    França-Silva F; Rego CHQ; Gomes-Junior FG; Moraes MHD; Medeiros AD; Silva CBD
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultivar Discrimination of Single Alfalfa (
    Yang L; Zhang Z; Hu X
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33217897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-destructive identification of single hard seed via multispectral imaging analysis in six legume species.
    Hu X; Yang L; Zhang Z
    Plant Methods; 2020; 16():116. PubMed ID: 32863853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multispectral imaging for distinguishing hybrid forest seeds of Corymbia spp. and Eucalyptus spp. from their progenitors.
    Michelon TB; Carstensen JM; Serra Negra Vieira E; Panobianco M
    J Environ Manage; 2024 Jul; 363():121383. PubMed ID: 38843728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of Processing Damage in Sugar Beet (
    Salimi Z; Boelt B
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31121960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cultivars identification of oat (
    Fu X; Bai M; Xu Y; Wang T; Hui Z; Hu X
    Front Plant Sci; 2023; 14():1113535. PubMed ID: 36824197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multispectral and X-ray images for characterization of Jatropha curcas L. seed quality.
    Bianchini VJM; Mascarin GM; Silva LCAS; Arthur V; Carstensen JM; Boelt B; Barboza da Silva C
    Plant Methods; 2021 Jan; 17(1):9. PubMed ID: 33499879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of the physiological and health quality of traditional and biofortified cowpea seeds.
    Dias LRC; Rodrigues AAC; Cavalcante RIFS; Correa LAD; Oliveira LJMG; Silva EKC; Oliveira ACS
    Braz J Biol; 2023; 83():e277489. PubMed ID: 38126643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages.
    Ravelombola W; Shi A; Weng Y; Mou B; Motes D; Clark J; Chen P; Srivastava V; Qin J; Dong L; Yang W; Bhattarai G; Sugihara Y
    Theor Appl Genet; 2018 Jan; 131(1):79-91. PubMed ID: 28948303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ageing-induced changes in nutritional and anti-nutritional factors in cowpea (
    Shaheen R; Srinivasan K; Anjum NA; Umar S
    J Food Sci Technol; 2019 Apr; 56(4):1757-1765. PubMed ID: 30996411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccessibility and bioavailability of iron in biofortified germinated cowpea.
    Sant' Ana CT; Antunes PT; Reis TCD; Váz-Tostes MDG; Meira EF; Costa NMB
    J Sci Food Agric; 2019 Nov; 99(14):6287-6295. PubMed ID: 31259417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward characterizing germination and early growth in the non-orthodox forest tree species Quercus ilex through complementary gel and gel-free proteomic analysis of embryo and seedlings.
    Romero-Rodríguez MC; Jorrín-Novo JV; Castillejo MA
    J Proteomics; 2019 Apr; 197():60-70. PubMed ID: 30408563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.
    Lima NB; Trindade FG; da Cunha M; Oliveira AE; Topping J; Lindsey K; Fernandes KV
    Plant Cell Environ; 2015 Apr; 38(4):718-28. PubMed ID: 25142352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.