These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30911367)

  • 1. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant
    Horiguchi G; Nemoto K; Yokoyama T; Hirotsu N
    AoB Plants; 2019 Apr; 11(2):plz009. PubMed ID: 30911367
    [No Abstract]   [Full Text] [Related]  

  • 2. Cooperation of an external carbonic anhydrase and HCO3- transporter supports underwater photosynthesis in submerged leaves of the amphibious plant Hygrophila difformis.
    Horiguchi G; Oyama R; Akabane T; Suzuki N; Katoh E; Mizokami Y; Noguchi K; Hirotsu N
    Ann Bot; 2024 Apr; 133(2):287-304. PubMed ID: 37832038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition From Proto-Kranz-Type Photosynthesis to HCO
    Horiguchi G; Matsumoto K; Nemoto K; Inokuchi M; Hirotsu N
    Front Plant Sci; 2021; 12():675507. PubMed ID: 34220895
    [No Abstract]   [Full Text] [Related]  

  • 4. Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study.
    Mommer L; Pons TL; Visser EJ
    J Exp Bot; 2006; 57(2):283-90. PubMed ID: 16291797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water wisteria genome reveals environmental adaptation and heterophylly regulation in amphibious plants.
    Li G; Zhao X; Yang J; Hu S; Ponnu J; Kimura S; Hwang I; Torii KU; Hou H
    Plant Cell Environ; 2024 Dec; 47(12):4720-4740. PubMed ID: 39076061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity.
    Mommer L; Visser EJ
    Ann Bot; 2005 Sep; 96(4):581-9. PubMed ID: 16024559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A perspective on underwater photosynthesis in submerged terrestrial wetland plants.
    Colmer TD; Winkel A; Pedersen O
    AoB Plants; 2011; 2011():plr030. PubMed ID: 22476500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different photosynthetic inorganic carbon utilization strategies in the heteroblastic leaves of an aquatic plant
    Liao Z; Li P; Zhou J; Li W; Jiang HS
    Front Plant Sci; 2023; 14():1142848. PubMed ID: 37035085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rewiring of hormones and light response pathways underlies the inhibition of stomatal development in an amphibious plant Rorippa aquatica underwater.
    Ikematsu S; Umase T; Shiozaki M; Nakayama S; Noguchi F; Sakamoto T; Hou H; Gohari G; Kimura S; Torii KU
    Curr Biol; 2023 Feb; 33(3):543-556.e4. PubMed ID: 36696900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SHOOT MERISTEMLESS participates in the heterophylly of Hygrophila difformis (Acanthaceae).
    Li G; Yang J; Chen Y; Zhao X; Chen Y; Kimura S; Hu S; Hou H
    Plant Physiol; 2022 Oct; 190(3):1777-1791. PubMed ID: 35984299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape shifting by amphibious plants in dynamic hydrological niches.
    van Veen H; Sasidharan R
    New Phytol; 2021 Jan; 229(1):79-84. PubMed ID: 31782798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments.
    Koga H; Ikematsu S; Kimura S
    Annu Rev Plant Biol; 2024 Jul; 75(1):579-604. PubMed ID: 38424069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibious-plant Nuphar lutea.
    Snir A; Gurevitz M; Marcus Y
    Photosynth Res; 2006 Dec; 90(3):233-42. PubMed ID: 17286188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and plasticity of C
    Murphy LR; Barroca J; Franceschi VR; Lee R; Roalson EH; Edwards GE; Ku MSB
    Funct Plant Biol; 2007 Aug; 34(7):571-580. PubMed ID: 32689385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and physiological response of amphibious Rotala rotundifolia from emergent to submerged form.
    Zhao W; Xiao J; Lin G; Peng Q; Chu S
    J Plant Res; 2024 Mar; 137(2):279-291. PubMed ID: 38270713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Underwater photosynthesis of submerged plants - recent advances and methods.
    Pedersen O; Colmer TD; Sand-Jensen K
    Front Plant Sci; 2013; 4():140. PubMed ID: 23734154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flood tolerance of Glyceria fluitans: the importance of cuticle hydrophobicity, permeability and leaf gas films for underwater gas exchange.
    Konnerup D; Pedersen O
    Ann Bot; 2017 Oct; 120(4):521-528. PubMed ID: 29059317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gibberellic acid induces non-Kranz anatomy with C
    Suizu Y; Takao K; Ueno O
    Planta; 2021 Jun; 254(1):10. PubMed ID: 34156511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient availability and nutrient use efficiency in plants growing in the transition zone between land and water.
    Cavalli G; Baattrup-Pedersen A; Riis T
    Plant Biol (Stuttg); 2016 Mar; 18(2):301-6. PubMed ID: 26414531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-Wisteria as an ideal plant to study heterophylly in higher aquatic plants.
    Li G; Hu S; Yang J; Schultz EA; Clarke K; Hou H
    Plant Cell Rep; 2017 Aug; 36(8):1225-1236. PubMed ID: 28466187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.