BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30911367)

  • 1. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant
    Horiguchi G; Nemoto K; Yokoyama T; Hirotsu N
    AoB Plants; 2019 Apr; 11(2):plz009. PubMed ID: 30911367
    [No Abstract]   [Full Text] [Related]  

  • 2. Cooperation of an external carbonic anhydrase and HCO3- transporter supports underwater photosynthesis in submerged leaves of the amphibious plant Hygrophila difformis.
    Horiguchi G; Oyama R; Akabane T; Suzuki N; Katoh E; Mizokami Y; Noguchi K; Hirotsu N
    Ann Bot; 2024 Apr; 133(2):287-304. PubMed ID: 37832038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition From Proto-Kranz-Type Photosynthesis to HCO
    Horiguchi G; Matsumoto K; Nemoto K; Inokuchi M; Hirotsu N
    Front Plant Sci; 2021; 12():675507. PubMed ID: 34220895
    [No Abstract]   [Full Text] [Related]  

  • 4. Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study.
    Mommer L; Pons TL; Visser EJ
    J Exp Bot; 2006; 57(2):283-90. PubMed ID: 16291797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity.
    Mommer L; Visser EJ
    Ann Bot; 2005 Sep; 96(4):581-9. PubMed ID: 16024559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A perspective on underwater photosynthesis in submerged terrestrial wetland plants.
    Colmer TD; Winkel A; Pedersen O
    AoB Plants; 2011; 2011():plr030. PubMed ID: 22476500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different photosynthetic inorganic carbon utilization strategies in the heteroblastic leaves of an aquatic plant
    Liao Z; Li P; Zhou J; Li W; Jiang HS
    Front Plant Sci; 2023; 14():1142848. PubMed ID: 37035085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rewiring of hormones and light response pathways underlies the inhibition of stomatal development in an amphibious plant Rorippa aquatica underwater.
    Ikematsu S; Umase T; Shiozaki M; Nakayama S; Noguchi F; Sakamoto T; Hou H; Gohari G; Kimura S; Torii KU
    Curr Biol; 2023 Feb; 33(3):543-556.e4. PubMed ID: 36696900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SHOOT MERISTEMLESS participates in the heterophylly of Hygrophila difformis (Acanthaceae).
    Li G; Yang J; Chen Y; Zhao X; Chen Y; Kimura S; Hu S; Hou H
    Plant Physiol; 2022 Oct; 190(3):1777-1791. PubMed ID: 35984299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape shifting by amphibious plants in dynamic hydrological niches.
    van Veen H; Sasidharan R
    New Phytol; 2021 Jan; 229(1):79-84. PubMed ID: 31782798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibious-plant Nuphar lutea.
    Snir A; Gurevitz M; Marcus Y
    Photosynth Res; 2006 Dec; 90(3):233-42. PubMed ID: 17286188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity and plasticity of C
    Murphy LR; Barroca J; Franceschi VR; Lee R; Roalson EH; Edwards GE; Ku MSB
    Funct Plant Biol; 2007 Aug; 34(7):571-580. PubMed ID: 32689385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments.
    Koga H; Ikematsu S; Kimura S
    Annu Rev Plant Biol; 2024 Feb; ():. PubMed ID: 38424069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underwater photosynthesis of submerged plants - recent advances and methods.
    Pedersen O; Colmer TD; Sand-Jensen K
    Front Plant Sci; 2013; 4():140. PubMed ID: 23734154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and physiological response of amphibious Rotala rotundifolia from emergent to submerged form.
    Zhao W; Xiao J; Lin G; Peng Q; Chu S
    J Plant Res; 2024 Mar; 137(2):279-291. PubMed ID: 38270713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flood tolerance of Glyceria fluitans: the importance of cuticle hydrophobicity, permeability and leaf gas films for underwater gas exchange.
    Konnerup D; Pedersen O
    Ann Bot; 2017 Oct; 120(4):521-528. PubMed ID: 29059317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance.
    Mommer L; Pons TL; Wolters-Arts M; Venema JH; Visser EJ
    Plant Physiol; 2005 Sep; 139(1):497-508. PubMed ID: 16126859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gibberellic acid induces non-Kranz anatomy with C
    Suizu Y; Takao K; Ueno O
    Planta; 2021 Jun; 254(1):10. PubMed ID: 34156511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient availability and nutrient use efficiency in plants growing in the transition zone between land and water.
    Cavalli G; Baattrup-Pedersen A; Riis T
    Plant Biol (Stuttg); 2016 Mar; 18(2):301-6. PubMed ID: 26414531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-Wisteria as an ideal plant to study heterophylly in higher aquatic plants.
    Li G; Hu S; Yang J; Schultz EA; Clarke K; Hou H
    Plant Cell Rep; 2017 Aug; 36(8):1225-1236. PubMed ID: 28466187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.