BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30911367)

  • 21. Effects of ethylene and abscisic acid upon heterophylly in Ludwigia arcuata (Onagraceae).
    Kuwabara A; Ikegami K; Koshiba T; Nagata T
    Planta; 2003 Oct; 217(6):880-7. PubMed ID: 12844266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photosynthesis of amphibious and obligately submerged plants in CO
    Sand-Jensen K; Frost-Christensen H
    Oecologia; 1998 Nov; 117(1-2):31-39. PubMed ID: 28308503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche palustris L.
    Koga H; Kojima M; Takebayashi Y; Sakakibara H; Tsukaya H
    Plant Cell; 2021 Oct; 33(10):3272-3292. PubMed ID: 34312675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Salt stress induces Kranz anatomy and expression of C
    Takao K; Shirakura H; Hatakeyama Y; Ueno O
    Photosynth Res; 2022 Aug; 153(1-2):93-102. PubMed ID: 35352232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water.
    Teakle NL; Colmer TD; Pedersen O
    Plant Cell Environ; 2014 Oct; 37(10):2339-49. PubMed ID: 24393094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris.
    Momokawa N; Kadono Y; Kudoh H
    Ann Bot; 2011 Nov; 108(7):1299-306. PubMed ID: 21896573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A functional comparison of acclimation to shade and submergence in two terrestrial plant species.
    Mommer L; de Kroon H; Pierik R; Bögemann GM; Visser EJ
    New Phytol; 2005 Jul; 167(1):197-206. PubMed ID: 15948842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Individual architecture and photosynthetic performance of the submerged form of Drosera intermedia Hayne.
    Banaś K; Aksmann A; Płachno BJ; Kapusta M; Marciniak P; Ronowski R
    BMC Plant Biol; 2024 May; 24(1):449. PubMed ID: 38783181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of an inhibitor of phosphoenolpyruvate carboxylase on photosynthesis of the terrestrial forms of amphibious Eleocharis species.
    Ueno O; Ishimaru K
    Photosynth Res; 2002; 71(3):265-72. PubMed ID: 16228137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Establishment of an Agrobacterium mediated transformation protocol for the detection of cytokinin in the heterophyllous plant Hygrophila difformis (Acanthaceae).
    Li G; Hu S; Yang J; Zhao X; Kimura S; Schultz EA; Hou H
    Plant Cell Rep; 2020 Jun; 39(6):737-750. PubMed ID: 32146519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular expression of C3 and C4 photosynthetic enzymes in the amphibious sedge Eleocharis retroflexa ssp. chaetaria.
    Ueno O; Wakayama M
    J Plant Res; 2004 Dec; 117(6):433-41. PubMed ID: 15480922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leaf gas films, underwater photosynthesis and plant species distributions in a flood gradient.
    Winkel A; Visser EJ; Colmer TD; Brodersen KP; Voesenek LA; Sand-Jensen K; Pedersen O
    Plant Cell Environ; 2016 Jul; 39(7):1537-48. PubMed ID: 26846194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [A comparative study on chlorophyll content, chlorophyll fluorescence and diurnal course of leaf gas exchange of two ecotypes of banyan].
    Zhao P; Sun G; Zeng X; Peng S; Mo X; Li Y
    Ying Yong Sheng Tai Xue Bao; 2000 Jun; 11(3):327-32. PubMed ID: 11767625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resistance to CO2 diffusion in cuticular membranes of amphibious plants and the implication for CO2 acquisition.
    Frost-Christensen H; Floto F
    Plant Cell Environ; 2007 Jan; 30(1):12-8. PubMed ID: 17177872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pigments, photosynthesis and photoinhibition in two amphibious plants: consequences of varying carbon availability.
    Nielsen SL; Nielsen HD
    New Phytol; 2006; 170(2):311-9. PubMed ID: 16608456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of photosynthetic rates of submerged rooted macrophytes.
    Nielsen SL; Sand-Jensen K
    Oecologia; 1989 Nov; 81(3):364-368. PubMed ID: 28311190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diel O2 Dynamics in Partially and Completely Submerged Deepwater Rice: Leaf Gas Films Enhance Internodal O2 Status, Influence Gene Expression and Accelerate Stem Elongation for 'Snorkelling' during Submergence.
    Mori Y; Kurokawa Y; Koike M; Malik AI; Colmer TD; Ashikari M; Pedersen O; Nagai K
    Plant Cell Physiol; 2019 May; 60(5):973-985. PubMed ID: 30668838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanism of improved aeration due to gas films on leaves of submerged rice.
    Verboven P; Pedersen O; Ho QT; Nicolai BM; Colmer TD
    Plant Cell Environ; 2014 Oct; 37(10):2433-52. PubMed ID: 24548021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atmospheric drought and low light impede mycorrhizal effects on leaf photosynthesis-a glasshouse study on tomato under naturally fluctuating environmental conditions.
    Bitterlich M; Franken P; Graefe J
    Mycorrhiza; 2019 Jan; 29(1):13-28. PubMed ID: 30382414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surviving floods: leaf gas films improve O₂ and CO₂ exchange, root aeration, and growth of completely submerged rice.
    Pedersen O; Rich SM; Colmer TD
    Plant J; 2009 Apr; 58(1):147-56. PubMed ID: 19077169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.