These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 30911768)
1. MaPmt4, a protein O-mannosyltransferase, contributes to cell wall integrity, stress tolerance and virulence in Metarhizium acridum. Zhao T; Tian H; Xia Y; Jin K Curr Genet; 2019 Aug; 65(4):1025-1040. PubMed ID: 30911768 [TBL] [Abstract][Full Text] [Related]
2. MaPmt1, a protein O-mannosyltransferase, contributes to virulence through governing the appressorium turgor pressure in Metarhizium acridum. Wen Z; Tian H; Xia Y; Jin K Fungal Genet Biol; 2020 Dec; 145():103480. PubMed ID: 33130254 [TBL] [Abstract][Full Text] [Related]
3. O-mannosyltransferase MaPmt2 contributes to stress tolerance, cell wall integrity and virulence in Metarhizium acridum. Wen Z; Tian H; Xia Y; Jin K J Invertebr Pathol; 2021 Sep; 184():107649. PubMed ID: 34343571 [TBL] [Abstract][Full Text] [Related]
4. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum. Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2018 Jul; 102(13):5611-5623. PubMed ID: 29713793 [TBL] [Abstract][Full Text] [Related]
5. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence. Zhang J; Jiang H; Du Y; Keyhani NO; Xia Y; Jin K PLoS Pathog; 2019 Aug; 15(8):e1007964. PubMed ID: 31461507 [TBL] [Abstract][Full Text] [Related]
6. The connection of protein O-mannosyltransferase family to the biocontrol potential of Beauveria bassiana, a fungal entomopathogen. Wang JJ; Qiu L; Chu ZJ; Ying SH; Feng MG Glycobiology; 2014 Jul; 24(7):638-48. PubMed ID: 24727441 [TBL] [Abstract][Full Text] [Related]
7. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum. Wei Q; Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863 [TBL] [Abstract][Full Text] [Related]
8. MaSnf1, a sucrose non-fermenting protein kinase gene, is involved in carbon source utilization, stress tolerance, and virulence in Metarhizium acridum. Ming Y; Wei Q; Jin K; Xia Y Appl Microbiol Biotechnol; 2014 Dec; 98(24):10153-64. PubMed ID: 25213916 [TBL] [Abstract][Full Text] [Related]
9. Contributions of β-tubulin to cellular morphology, sporulation and virulence in the insect-fungal pathogen, Metarhizium acridum. Zhang J; Jin K; Xia Y Fungal Genet Biol; 2017 Jun; 103():16-24. PubMed ID: 28336393 [TBL] [Abstract][Full Text] [Related]
10. MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum. Zhang M; Wei Q; Xia Y; Jin K Curr Genet; 2020 Apr; 66(2):397-408. PubMed ID: 31471639 [TBL] [Abstract][Full Text] [Related]
11. The C-terminal MIR-containing region in the Pmt1 O-mannosyltransferase restrains sporulation and is dispensable for virulence in Beauveria bassiana. He Z; Luo L; Keyhani NO; Yu X; Ying S; Zhang Y Appl Microbiol Biotechnol; 2017 Feb; 101(3):1143-1161. PubMed ID: 27722917 [TBL] [Abstract][Full Text] [Related]
12. Calcineurin modulates growth, stress tolerance, and virulence in Metarhizium acridum and its regulatory network. Cao Y; Du M; Luo S; Xia Y Appl Microbiol Biotechnol; 2014 Oct; 98(19):8253-65. PubMed ID: 24931310 [TBL] [Abstract][Full Text] [Related]
13. MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum. Jin K; Ming Y; Xia YX Microbiology (Reading); 2012 Dec; 158(Pt 12):2987-2996. PubMed ID: 23038805 [TBL] [Abstract][Full Text] [Related]
14. N-terminal zinc fingers of MaNCP1 contribute to growth, stress tolerance, and virulence in Metarhizium acridum. Li C; Xia Y; Jin K Int J Biol Macromol; 2022 Sep; 216():426-436. PubMed ID: 35809667 [TBL] [Abstract][Full Text] [Related]
15. The transmembrane protein MaSho1 negatively regulates conidial yield by shifting the conidiation pattern in Metarhizium acridum. Zhao T; Wen Z; Xia Y; Jin K Appl Microbiol Biotechnol; 2020 May; 104(9):4005-4015. PubMed ID: 32170386 [TBL] [Abstract][Full Text] [Related]
16. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum. Jin K; Han L; Xia Y J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951 [TBL] [Abstract][Full Text] [Related]
17. MaSln1, a Conserved Histidine Protein Kinase, Contributes to Conidiation Pattern Shift Independent of the MAPK Pathway in Wen Z; Xia Y; Jin K Microbiol Spectr; 2022 Apr; 10(2):e0205121. PubMed ID: 35343772 [TBL] [Abstract][Full Text] [Related]
18. Mid1 affects ion transport, cell wall integrity, and host penetration of the entomopathogenic fungus Metarhizium acridum. Xie M; Zhou X; Xia Y; Cao Y Appl Microbiol Biotechnol; 2019 Feb; 103(4):1801-1810. PubMed ID: 30617534 [TBL] [Abstract][Full Text] [Related]
19. The homeobox gene MaH1 governs microcycle conidiation for increased conidial yield by mediating transcription of conidiation pattern shift-related genes in Metarhizium acridum. Gao P; Li M; Jin K; Xia Y Appl Microbiol Biotechnol; 2019 Mar; 103(5):2251-2262. PubMed ID: 30631896 [TBL] [Abstract][Full Text] [Related]
20. Genetical and O-glycoproteomic analyses reveal the roles of three protein O-mannosyltransferases in phytopathogen Fusarium oxysporum f.sp. cucumerinum. Xu Y; Zhou H; Zhao G; Yang J; Luo Y; Sun S; Wang Z; Li S; Jin C Fungal Genet Biol; 2020 Jan; 134():103285. PubMed ID: 31648060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]