BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 30911924)

  • 1. Staphylococcus aureus heme and siderophore-iron acquisition pathways.
    Conroy BS; Grigg JC; Kolesnikov M; Morales LD; Murphy MEP
    Biometals; 2019 Jun; 32(3):409-424. PubMed ID: 30911924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus.
    Laakso HA; Marolda CL; Pinter TB; Stillman MJ; Heinrichs DE
    J Biol Chem; 2016 Jan; 291(1):29-40. PubMed ID: 26534960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme-Dependent Siderophore Utilization Promotes Iron-Restricted Growth of the Staphylococcus aureus
    Batko IZ; Flannagan RS; Guariglia-Oropeza V; Sheldon JR; Heinrichs DE
    J Bacteriol; 2021 Nov; 203(24):e0045821. PubMed ID: 34606375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The heme-sensitive regulator SbnI has a bifunctional role in staphyloferrin B production by
    Verstraete MM; Morales LD; Kobylarz MJ; Loutet SA; Laakso HA; Pinter TB; Stillman MJ; Heinrichs DE; Murphy MEP
    J Biol Chem; 2019 Jul; 294(30):11622-11636. PubMed ID: 31197035
    [No Abstract]   [Full Text] [Related]  

  • 5. Involvement of reductases IruO and NtrA in iron acquisition by Staphylococcus aureus.
    Hannauer M; Arifin AJ; Heinrichs DE
    Mol Microbiol; 2015 Jun; 96(6):1192-210. PubMed ID: 25777658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth promotion of the opportunistic human pathogen, Staphylococcus lugdunensis, by heme, hemoglobin, and coculture with Staphylococcus aureus.
    Brozyna JR; Sheldon JR; Heinrichs DE
    Microbiologyopen; 2014 Apr; 3(2):182-95. PubMed ID: 24515974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heme protects Pseudomonas aeruginosa and Staphylococcus aureus from calprotectin-induced iron starvation.
    Zygiel EM; Obisesan AO; Nelson CE; Oglesby AG; Nolan EM
    J Biol Chem; 2021; 296():100160. PubMed ID: 33273016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus.
    Beasley FC; Vinés ED; Grigg JC; Zheng Q; Liu S; Lajoie GA; Murphy ME; Heinrichs DE
    Mol Microbiol; 2009 May; 72(4):947-63. PubMed ID: 19400778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus.
    Cheung J; Beasley FC; Liu S; Lajoie GA; Heinrichs DE
    Mol Microbiol; 2009 Nov; 74(3):594-608. PubMed ID: 19775248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo growth of Staphylococcus lugdunensis is facilitated by the concerted function of heme and non-heme iron acquisition mechanisms.
    Flannagan RS; Brozyna JR; Kumar B; Adolf LA; Power JJ; Heilbronner S; Heinrichs DE
    J Biol Chem; 2022 May; 298(5):101823. PubMed ID: 35283192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen Staphylococcus aureus.
    Madsen JL; Johnstone TC; Nolan EM
    J Am Chem Soc; 2015 Jul; 137(28):9117-27. PubMed ID: 26030732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Basis for Xenosiderophore Utilization by the Human Pathogen Staphylococcus aureus.
    Endicott NP; Lee E; Wencewicz TA
    ACS Infect Dis; 2017 Jul; 3(7):542-553. PubMed ID: 28505405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron Uptake Oxidoreductase (IruO) Uses a Flavin Adenine Dinucleotide Semiquinone Intermediate for Iron-Siderophore Reduction.
    Kobylarz MJ; Heieis GA; Loutet SA; Murphy MEP
    ACS Chem Biol; 2017 Jul; 12(7):1778-1786. PubMed ID: 28463500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome mining and functional genomics for siderophore production in Aspergillus niger.
    Franken AC; Lechner BE; Werner ER; Haas H; Lokman BC; Ram AF; van den Hondel CA; de Weert S; Punt PJ
    Brief Funct Genomics; 2014 Nov; 13(6):482-92. PubMed ID: 25062661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional membrane microdomains and the hydroxamate siderophore transporter ATPase FhuC govern Isd-dependent heme acquisition in
    Adolf LA; Müller-Jochim A; Kricks L; Puls JS; Lopez D; Grein F; Heilbronner S
    Elife; 2023 Apr; 12():. PubMed ID: 37042640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence.
    Beasley FC; Marolda CL; Cheung J; Buac S; Heinrichs DE
    Infect Immun; 2011 Jun; 79(6):2345-55. PubMed ID: 21402762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of SirABC in iron-siderophore import in Staphylococcus aureus.
    Dale SE; Sebulsky MT; Heinrichs DE
    J Bacteriol; 2004 Dec; 186(24):8356-62. PubMed ID: 15576785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IruO is a reductase for heme degradation by IsdI and IsdG proteins in Staphylococcus aureus.
    Loutet SA; Kobylarz MJ; Chau CHT; Murphy MEP
    J Biol Chem; 2013 Sep; 288(36):25749-25759. PubMed ID: 23893407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular Heme Uptake and the Challenge of Bacterial Cell Membranes.
    Huang W; Wilks A
    Annu Rev Biochem; 2017 Jun; 86():799-823. PubMed ID: 28426241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TCA cycle activity in Staphylococcus aureus is essential for iron-regulated synthesis of staphyloferrin A, but not staphyloferrin B: the benefit of a second citrate synthase.
    Sheldon JR; Marolda CL; Heinrichs DE
    Mol Microbiol; 2014 May; 92(4):824-39. PubMed ID: 24666349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.