BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30912014)

  • 1. Integration of RNAi and Small Molecule Screens to Identify Targets for Drug Development.
    Drosopoulos K; Linardopoulos S
    Methods Mol Biol; 2019; 1953():33-42. PubMed ID: 30912014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of RNAi and small molecule screens to identify targets for drug development.
    Drosopoulos K; Linardopoulos S
    Methods Mol Biol; 2013; 986():97-104. PubMed ID: 23436408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening Library Design.
    Ashenden SK
    Methods Enzymol; 2018; 610():73-96. PubMed ID: 30390806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical screening in zebrafish for novel biological and therapeutic discovery.
    Wiley DS; Redfield SE; Zon LI
    Methods Cell Biol; 2017; 138():651-679. PubMed ID: 28129862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target discovery screens using pooled shRNA libraries and next-generation sequencing: A model workflow and analytical algorithm.
    Schaefer C; Mallela N; Seggewiß J; Lechtape B; Omran H; Dirksen U; Korsching E; Potratz J
    PLoS One; 2018; 13(1):e0191570. PubMed ID: 29385199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing zebrafish chemical screens.
    Peterson RT; Fishman MC
    Methods Cell Biol; 2011; 105():525-41. PubMed ID: 21951546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput RNAi screening for the identification of novel targets.
    Henderson MC; Azorsa DO
    Methods Mol Biol; 2013; 986():89-95. PubMed ID: 23436407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Array-Based Ligand Discovery Platform for Proteins With Short Half-Lives.
    Leifer BS; Doyle SK; Richters A; Evans HL; Koehler AN
    Methods Enzymol; 2018; 610():191-218. PubMed ID: 30390799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-Based Annotation of Chemogenomic Libraries for Phenotypic Screening.
    Tjaden A; Chaikuad A; Kowarz E; Marschalek R; Knapp S; Schröder M; Müller S
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flexible multiwell format for immunofluorescence screening microscopy of small-molecule inhibitors.
    Scholz AK; Klebl BM; Morkel M; Lehrach H; Dahl A; Lange BM
    Assay Drug Dev Technol; 2010 Oct; 8(5):571-80. PubMed ID: 20666660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens.
    Perrimon N; Friedman A; Mathey-Prevot B; Eggert US
    Drug Discov Today; 2007 Jan; 12(1-2):28-33. PubMed ID: 17198970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Guide to Run Affinity Screens Using Differential Scanning Fluorimetry and Surface Plasmon Resonance Assays.
    Bergsdorf C; Wright SK
    Methods Enzymol; 2018; 610():135-165. PubMed ID: 30390797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro High-Throughput RNAi Screening to Accelerate the Process of Target Identification and Drug Development.
    Yin H; Kassner M
    Methods Mol Biol; 2016; 1470():137-49. PubMed ID: 27581290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Identification of Pharmacological Targets from Small-Molecule Phenotypic Screens.
    Liu X; Baarsma HA; Thiam CH; Montrone C; Brauner B; Fobo G; Heier JS; Duscha S; Königshoff M; Angeli V; Ruepp A; Campillos M
    Cell Chem Biol; 2016 Oct; 23(10):1302-1313. PubMed ID: 27667560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PAIN(S) relievers for medicinal chemists: how computational methods can assist in hit evaluation.
    Stork C; Kirchmair J
    Future Med Chem; 2018 Jul; 10(13):1533-1535. PubMed ID: 29956552
    [No Abstract]   [Full Text] [Related]  

  • 16. Chemical screening in zebrafish for novel biological and therapeutic discovery.
    Tan JL; Zon LI
    Methods Cell Biol; 2011; 105():493-516. PubMed ID: 21951544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
    Miller TW; Amason JD; Garcin ED; Lamy L; Dranchak PK; Macarthur R; Braisted J; Rubin JS; Burgess TL; Farrell CL; Roberts DD; Inglese J
    PLoS One; 2019; 14(7):e0218897. PubMed ID: 31276567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput screening approaches to identify regulators of mammalian autophagy.
    Joachim J; Jiang M; McKnight NC; Howell M; Tooze SA
    Methods; 2015 Mar; 75():96-104. PubMed ID: 25688674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of CPAP-tubulin interaction prevents proliferation of centrosome-amplified cancer cells.
    Mariappan A; Soni K; Schorpp K; Zhao F; Minakar A; Zheng X; Mandad S; Macheleidt I; Ramani A; Kubelka T; Dawidowski M; Golfmann K; Wason A; Yang C; Simons J; Schmalz HG; Hyman AA; Aneja R; Ullrich R; Urlaub H; Odenthal M; Büttner R; Li H; Sattler M; Hadian K; Gopalakrishnan J
    EMBO J; 2019 Jan; 38(2):. PubMed ID: 30530478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hit-to-Lead: Hit Validation and Assessment.
    Hevener KE; Pesavento R; Ren J; Lee H; Ratia K; Johnson ME
    Methods Enzymol; 2018; 610():265-309. PubMed ID: 30390802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.