These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 30912048)
1. CRISPR/Cas9 as a Genome Editing Tool for Targeted Gene Integration in CHO Cells. Sergeeva D; Camacho-Zaragoza JM; Lee JS; Kildegaard HF Methods Mol Biol; 2019; 1961():213-232. PubMed ID: 30912048 [TBL] [Abstract][Full Text] [Related]
2. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577 [TBL] [Abstract][Full Text] [Related]
3. Controlling Ratios of Plasmid-Based Double Cut Donor and CRISPR/Cas9 Components to Enhance Targeted Integration of Transgenes in Chinese Hamster Ovary Cells. Shin SW; Kim D; Lee JS Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673701 [TBL] [Abstract][Full Text] [Related]
4. A Site-Specific Integration Reporter System That Enables Rapid Evaluation of CRISPR/Cas9-Mediated Genome Editing Strategies in CHO Cells. Hamaker NK; Lee KH Biotechnol J; 2020 Aug; 15(8):e2000057. PubMed ID: 32500600 [TBL] [Abstract][Full Text] [Related]
5. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells. Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126 [TBL] [Abstract][Full Text] [Related]
6. Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment. Lee JS; Grav LM; Pedersen LE; Lee GM; Kildegaard HF Biotechnol Bioeng; 2016 Nov; 113(11):2518-23. PubMed ID: 27159230 [TBL] [Abstract][Full Text] [Related]
7. CRISPeering: Bioengineering the Host Cells through CRISPRCas9 Genome Editing System as the Next-generation of Cell Factories. Morowvat MH Recent Pat Biotechnol; 2021 Oct; 15(2):137-147. PubMed ID: 33874877 [TBL] [Abstract][Full Text] [Related]
8. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Zhao M; Wang J; Luo M; Luo H; Zhao M; Han L; Zhang M; Yang H; Xie Y; Jiang H; Feng L; Lu H; Zhu J Appl Microbiol Biotechnol; 2018 Jul; 102(14):6105-6117. PubMed ID: 29789882 [TBL] [Abstract][Full Text] [Related]
9. Targeted integration into pseudo attP sites of CHO cells using CRISPR/Cas9. Pourtabatabaei S; Ghanbari S; Damavandi N; Bayat E; Raigani M; Zeinali S; Davami F J Biotechnol; 2021 Aug; 337():1-7. PubMed ID: 34157351 [TBL] [Abstract][Full Text] [Related]
10. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Grav LM; Lee JS; Gerling S; Kallehauge TB; Hansen AH; Kol S; Lee GM; Pedersen LE; Kildegaard HF Biotechnol J; 2015 Sep; 10(9):1446-56. PubMed ID: 25864574 [TBL] [Abstract][Full Text] [Related]
11. Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems. Kawabe Y; Komatsu S; Komatsu S; Murakami M; Ito A; Sakuma T; Nakamura T; Yamamoto T; Kamihira M J Biosci Bioeng; 2018 May; 125(5):599-605. PubMed ID: 29295784 [TBL] [Abstract][Full Text] [Related]
12. High throughput, efficacious gene editing & genome surveillance in Chinese hamster ovary cells. Huhn SC; Ou Y; Kumar A; Liu R; Du Z PLoS One; 2019; 14(12):e0218653. PubMed ID: 31856197 [TBL] [Abstract][Full Text] [Related]
13. Novel CRISPR/Cas9-mediated knockout of LIG4 increases efficiency of site-specific integration in Chinese hamster ovary cell line. Wang C; Sun Z; Wang M; Jiang Z; Zhang M; Cao H; Luo L; Qiao C; Xiao H; Chen G; Li X; Liu J; Wei Z; Shen B; Wang J; Feng J Biotechnol Lett; 2022 Sep; 44(9):1063-1072. PubMed ID: 35918621 [TBL] [Abstract][Full Text] [Related]
14. Optimized CRISPR/Cas9 strategy for homology-directed multiple targeted integration of transgenes in CHO cells. Shin SW; Lee JS Biotechnol Bioeng; 2020 Jun; 117(6):1895-1903. PubMed ID: 32086804 [TBL] [Abstract][Full Text] [Related]
15. High-efficiency and multilocus targeted integration in CHO cells using CRISPR-mediated donor nicking and DNA repair inhibitors. Hamaker NK; Lee KH Biotechnol Bioeng; 2023 Sep; 120(9):2419-2440. PubMed ID: 37039773 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the paired-Cas9 nickase and RNA-guided FokI genome editing tools in precise integration of an anti-CD52 bicistronic monoclonal antibody expression construct at Chinese hamster ovary cells 18S rDNA locus. Bayat H; Farahmand F; Tabatabaee SH; Shams F; Mohammadian O; Pourmaleki E; Rahimpour A Protein Expr Purif; 2024 May; 217():106445. PubMed ID: 38342386 [TBL] [Abstract][Full Text] [Related]
18. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Lee JS; Kallehauge TB; Pedersen LE; Kildegaard HF Sci Rep; 2015 Feb; 5():8572. PubMed ID: 25712033 [TBL] [Abstract][Full Text] [Related]
19. A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO Cells. Inniss MC; Bandara K; Jusiak B; Lu TK; Weiss R; Wroblewska L; Zhang L Biotechnol Bioeng; 2017 Aug; 114(8):1837-1846. PubMed ID: 28186334 [TBL] [Abstract][Full Text] [Related]
20. CRISPR/Cas12a-mediated CHO genome engineering can be effectively integrated at multiple stages of the cell line generation process for bioproduction. Schweickert PG; Wang N; Sandefur SL; Lloyd ME; Konieczny SF; Frye CC; Cheng Z Biotechnol J; 2021 Apr; 16(4):e2000308. PubMed ID: 33369118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]